• Title/Summary/Keyword: Earth retaining structure

Search Result 128, Processing Time 0.032 seconds

Proposal of the Modified Management Criteria Value in Earth Retaining Structure using Measured Data (계측자료를 이용한 흙막이 구조물의 수정된 관리기준치 제안)

  • Kim, Jueng-Kyu;Park, Heung-Gyu;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.95-103
    • /
    • 2016
  • The absolute value management method is widely used in the most of the earth retaining construction, which evaluates the safety by comparing measurement result and management criteria. Therefore, the management criteria is the standard to evaluate the safety of the site, and in other words, the criteria is a direct factor of the evaluation. That means that the safety of the site can not be acquired if the management criteria is not proper, even though the measurement system is perfectly set. However, many of field technicians do not have rely on the current management criteria, and they even recognize the necessity of the revision. Therefore, in this study, the necessity of the revision was studied. Also, the optimum criteria selection and the application were performed based on the test results of earth retaining deflection and probabilistic theory. The absolute value management method was used for this study. The details are tabulated.

Case Study on the Design of Earth Retaining and Retention Wall Using Pre-casted Concreted Pile(PHC) (기성콘크리트말뚝(PHC)을 이용한 옹벽겸용 흙막이설계사례)

  • Han, Jung-Geun;Cho, Young-Ryang;Kim, Sang-Kwi;Park, Sang-Cheol;Eo, Yun-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.3
    • /
    • pp.33-42
    • /
    • 2005
  • The bearing methods using pile of steel itself or reinforced concrete has been applying which in excavated depth was not deep. Also, the retaining wall as resisting structure to lateral force has taken weakness that the cure periods of concreted is long. Recently, with the material cost of steel, the application of cement is more increasing trend. In this study, the design methods of earth retaining and retention wall within the pre-casted concrete pile, PHC(Pretentioned spun High strength Concrete piles), was proposed which in the ground condition of excavated depth was not deep. The typical ground conditions, cohesive and non-cohesive soil, was considered as follows; soil strength as internal friction angle and UU(Undrained Unconsolidation triaxial test) strength, soil reaction and stabilization of structures. The application of design methods could be confirmed through the comparing and analyzing between measured data and utility software for the design.

Study on the Development of Reinforced Earth Retaining Wall (보강옹벽개발연구)

  • 유용환
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.51-66
    • /
    • 1986
  • The design of fabric reinforced retaining wall structure was discussed in this article. It was confirmed that the reinforced retaining earth wall which was designed by new theoretical formulae developed this time was stable structurally and economically. The plastic fabric filter which was placed in layers behind the facing element reduced the lateral earth pressure on the wall elements in comparison with a conventional retaining earth walls. The reinforcing characteristics of earth wall was governed by the spacing of fabric layers, effective length of fabrics, particle distribution and compaction, and thus it is essential that, in the construction field, the reinforcing strips should be selected in order to develop the maximum friction forces bet.eon soil and fabric filters. The maximum tensile stress developed from the reinforcing strips was appeared at a little far distance from the back of skin element and it was not well agreed with the Rankine's theory but distributed well as a symmetrical shape against the point of the maximum tensile stress. The total length of the different layers should be sufficient so that the tension in the fabric strip could be transferred to the backfill material. Also the total stability of reinforced earth wall should be checked with respect to a failure surface which extended blond the different lathers.

  • PDF

Study on the Application of Semi-open cut Top-Down Construction for Framework (세미 오픈컷 역타공법의 현장적용에 관한 연구)

  • Sho, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.129-138
    • /
    • 2011
  • Construction methods for underground structure are classified as bottom-up, up-up, and top-down methods depending on the procedure of construction related to a superstructure. In top-down construction methods, building's main structure is built from the ground level downwards by sequentially alternating ground excavation and structure construction. In the mean time, the main structure is also used as supporting structure for earth-retaining wall, which results in the increased stability of the earth-retaining wall due to the minimized deformation in adjacent structures and surrounding grounds. In addition, the method makes it easy to secure a field for construction work in the downtown area by using each floor slabs as working spaces. However top-down construction method is often avoided since an excavation under the slab has low efficiency and difficult environment for work, and high cost compared with earth anchor method. This paper proposes a combined construction method where semi-open cut is selected as excavation work, slurry as earth -retaining wall and CWS as top-down construction method. In the case study targeted for an actual construction project, the proposed method is compared with existing top-down construction method in terms of economic feasibility, construction period and work efficiency. The proposed construction method results in increased work efficiency in the transportation of earth and sand, and steel frame erection, better quality management in PHD construction, and reduced construction period.

A Feasibility Analysis on Steel Net Gabion Reinforcement of Reinforced Earth-retaining Wall (자연친화적인 보강토 옹벽의 철판망 gabion 보강재 타당성 분석)

  • Chung, Dae-Seouk
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Steel net gabion is eco-friendly retaining wall structure showing favorable ability to overcome construction and environmental restriction and also to resist corrosion, chemical attack and degradation. This paper is dealt with the applicability of gabion metal net as a substitution of existing strengthening material. Pull out test was carried out to verify the applicability of gabion metal net. According to results, the increase of surcharge loading and horizontal load resulted in a yield of metal net. The stress at the time of yield was in the range of elasticity. Accordingly, gabion metal net can be substituted for existing geogrid and there is a need for experiment and analysis of arrangement direction and durability of gabion steel net.

The Retaining wall Design nearby Large Excavation for Developed Underground in Urban Area. (도심지 지하공간개발을 위한 대형 대심도 근접굴착 흙막이 설계사례)

  • Shin, Yung-Wok;Park, Jong-Min;Lee, Sung-Hwan;Lee, Bong-Yeol;Lee, Jung-Young;Chang, Huck-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.49-83
    • /
    • 2005
  • ESCP Project showed an urban excavation case and introduced design method for case of Soil-Structure behavior in urban excavation. In this case, a retaining structures design to analysis the behavior of retaining wall and adjacent structures in urban excavations was applied by using a Elasto-plastic beam and limit Equilibrium analysis and soil-structure interaction analysis. Reliable design of earth retaining structures and the ground adjacent to braced wall in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an imprtant issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary.

  • PDF

Design Optimization of Earth Retaining Walls Using the Taguchi Method (다구찌 기법을 활용한 흙막이 가설공법 최적설계 방안)

  • Moon, Sungwoo;Kim, Sungbu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Temporary structures provide the accessible working area when building a permanent building structure in the construction operation. Executed in a natural environment, the temporary structure is prone to the external influence factors of underground water, soil conditions, etc. These factors should be carefully considered in designing the temporary structure. The objective of this study is to apply the external influence factors in designing a more reliable earth retaining wall. The research methodology is based on the Taguchi method that has been studied to improve product quality in the industry. An orthogonal array was developed to analyze the interaction between the external influence factors and the internal influence factors. A sample case study demonstrated that the Taguchi method can be used in planning a more reliable temporary structure for earth retaining walls.

A Reliability Analysis of Rigid Retaining Wall due to the Modes of Wall Movement (벽체변위에 따른 토류벽의 신뢰도해석)

  • Jae, Yeong-Su;Kim, Yong-Pil;Song, Yong-Seon
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-16
    • /
    • 1988
  • The safety factor has been used widely and uniquely at present to check the safety of the structure . However, probability of failure would be logically attempted to check the reliability of the structure in future Coulomb's theory or Rankine's theory has been applied in practice to retaining earth structure in spite of the fact that the lateral earth pressure, which is the primary factor in the determination of wall structure, depends on the modes of wall movement . This study is concentrated on the two modes of , wall movement (active case rotation about bottom(AB) , active case rotation about top(AT)) of the overturning'failure of vertical wall with horizontal sand backfill . The static active earth pressure is determined by applying each of Coulomb's theory, Dubrova's redistribution theory and Chang's method The earthquake active earth pressure is determined by adding Seed and Whitman's earthquake pressure to the static earth pressure , On the condition that design variables are fixed with each of the above earth pressure, reliability is analyzed using the recently developed method of AFOSM (Advanced First Order Second Moment)

  • PDF

A case Study on Collapse Causes and Restoration of Retaining Wall with Vegetated Concrete Block (식생블록 옹벽의 붕괴원인 및 복구방안에 관한 사례 연구)

  • Hong, Gigwon;You, Seung-Kyong;Yun, Jung-Mann;Park, Jong-Beom;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.105-115
    • /
    • 2016
  • This paper describes a restoration of retaining wall, which was collapsed by rainfall. The failure causes was analyzed by field case, and then the countermeasure was suggested. The failure causes confirmed that observance of design and construction criteria was insufficient. It also was the climate condition like a rainfall and inappropriate construction management. The stability analysis for retaining wall, soil improvement and reinforced earth wall was conducted to confirm validity of the countermeasure. The analysis results showed that the suggested construction method satisfied in required safety factors. Therefore, it should be secured the stability of the structure based on the application of appropriate design method and construction management, when structure was constructed.

Analysis of Behaviour of Earth Retaining Structure using Cement-mixing Method (교반혼합체로 보강된 흙막이 벽체의 거동 분석)

  • Kim, Young-Seok;Cho, Yong-Sang;Kang, In-Cheol;Kim, In-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1294-1300
    • /
    • 2009
  • Recently, excavations in highly congest urban area have been increased. For the excavations conducted in extremely narrow spaces, we have been developing a novel soil reinforcement system of temporary retaining walls by using deep cement mixing method. The developing method installs largerdiameter ($\Phi$=300~500mm) and shorter reinforcement blocks than previous reinforcement system for mobilizing friction with soils, therefore it has advantages of not only shortening the length of reinforcement system but also reducing the amount of reinforcement. In this study, we performed a numerical analysis of the new reinforcement system by using a commercial finite element program, and evaluated the behavior of the reinforced retaining wall system under various conditions of the length, the diameter, the spacing, and the angle of the reinforcement system.

  • PDF