• Title/Summary/Keyword: Earth retaining structure

Search Result 130, Processing Time 0.03 seconds

A Study on Design of Earth-Retaining Structure Constructed by a Row of Bored Piles (주열식(柱列式) 흙막이벽(壁)의 설계(設計)에 관한 연구(研究))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 1985
  • A row of bored piles has been used in several excavation works to retain the earth. This excavation bracing system has much effect on low-vibration and low-noise during construction. The system is also effective to provide protection to the adjacent existing ground and structures. For the purpose of establishment of a logical design method for the bored piles, first, a theoretical equation to estimate the resistance of piles is derived. Because arching action of soils between piles is considered in the equation, the characteristics of soils and the installation condition of piles would be considered logically from the beginning. Then a method is investigated to decide the interval ratio of piles. According to the method, the interval between piles can be decided from the information of the Peck's stability number, the coefficient of lateral earth pressure and the internal friction angle of soil. Finally, a design method is presented for the bored piles used for excavation work. In the presented design method, such factors as depth of excavation, pile diameter, interval between piles, pile length below bottom of excavation and pile stiffness, can be selected systematically.

  • PDF

A Study on the Effects of Lateral Displacement of Retaining Wall on the Distribution of Lateral Earth Pressure -In the Case of Sloping Noncohesive Backfills- (벽체(壁體)의 변위(變位)와 토압분포(土壓分布)와의 관계(關係)에 대(對)한 연구(硏究) -비점성토(非粘性土)의 지표면(地表面)이 경사(傾斜)질 경우-)

  • Cho, Hi-Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.17 no.1
    • /
    • pp.29-34
    • /
    • 1973
  • This study was performed for the purpose of determining the effects of distribution of the lateral earth pressure in the case of sloping backfills of being consisted of the idealized cohesionless fragmental masses. The displacements were classified as eight types by D_UBROVA (by patterns). B type among these has its turning point at the top of the wall, moves outwardly and is significant to gravitational structure because of its foundation elasticity which causes displacement. Therefore, it might be surely acknowledged that the resultant, follows; $$E=1/2{\cdot}rH^2\frac{sin(u-{\varepsilon})cos({\alpha}+{\varepsilon})}{cos(u+{\alpha})}{\cdot}cot(u+{\rho})(t/m^3)$$, is appropriate for applying it to the designing of the sand-catch dams. The results obtained are as follows: 1. Lateral earth pressure is proportional to the square of the wall heights. 2. The coefficient(K) is directly proportional to the sloping of backfill surface and inversely proportional to the displacement. 3. The distribution of the pressure looks like parabola, curve of second order (Fig. 5, b). 4. The distribution of the pressure strength looks like that of hydrostatic pressure (Fig. 5, c).

  • PDF

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

A Review of Instrumentation System and Construction of Korea Highway Test Road (시험도로 건설과 계측시스템 구축)

  • 최준성;김도형;김성환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.603-606
    • /
    • 2000
  • The cost needed for the construction and management of highways in the whole nation is rapidly growing so the research that can decrease the cost is required. However, most of the highway specs have simply converted from those of other countries, including USA. Therefore, some of our design and construction specs were not the optimum ones based on our own situation, requiring a research under the actual traffic and environment of our nation. The use of test road develops many aspects of highway engineering. Those are evaluation of construction materials, a general overview of korea pavement design and serviceability under the actual traffic and environmental condition of the nation. It is also economical and efficient compared to the trial construction of each item in spreaded form. A test road, 7.7km long with two lanes, is being constructed on the Inner Central Expressway. In this test road, 2.7km is planned for asphalt pavement and 3.4km is planned for concrete pavement. Three test bridges and five earth retaining structures will be included in the test road. Based on the master plan, the major performance was progressing such as detailed research modules of each area, preliminary research for the future research, sensor surveys for the behavior analyses of pavements and structures with installation methods and data acquisition systems, the foundation research of Integrated Instrumentation System and the Management Plan for automated measurement. Some area(structure research division, geotechnical research division) was designed the instrumentation plan because some instrument sensors must be installed during the construction of the test road. And then the instrumentation plan of each area was enforcing because a large majority of the instrument sensors must be installed after the construction of the test road. The field surveys with material property tests and pilot instrumentation test with sensor tests was also performing in accordance with the construction in the field.

  • PDF

Study on the Safety Assurance for the Temporary Structures (가설구조물 안전성 확보 방안 연구)

  • Lee, Jung Seok;Moon, Seong Oh;Youn, Ye Bin;Lim, Nam Gi;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.73-80
    • /
    • 2018
  • According to the statistics publication of KOSHA, more than half of serious accidents at the construction sites were related to the temporary works and/or the temporary structures such as scaffoldings, shores, earth retaining walls, etc. The structural failures are occurred because of the overload acting on the structures or lack of performance of the one or more members of the structures. For the prevention of the collapse accidents relating to the temporary structures at the construction sites, we have to control construction processes not to occur the overload and also to control the performance and quality of each member of the temporary structures. MOLIT has amended the "Construction Technology Promotion Act" on Jan. 7th, 2015 to ensure the structural safety of the temporary structures. According to the Act, the designers of the construction design projects should check the structural integrity of the structures including the temporary structures and the construction companies have to let 'the Relative Professionals' confirm the structural integrity of temporary structures, the shores(${\geq}5m$ high) and the scaffolds(${\geq}31m$ high), before construction. Also, MOLIT has amended the "Regulation for Construction Technology Promotion Act" on Jul. 4th, 2016 for quality management and testing of temporary equipments. According th this regulation, the construction companies and supervisors should manage and test the temporary equipments before using them. In this paper, the standard drawings of the shores(< 5 m high) and the scaffolds(< 31 m high) and the amended "Business Guideline for Quality Management of Construction Work" are presented. As the result of this study, MOLIT noticed the amended "Business Guideline for Quality Management of Construction Work" on Jul. 1st, 2017.

Evaluation of Loss of Prestress Force of Tensile Anchor by Long Term Measurement (장기계측을 통한 인장형 앵커의 인장력 손실 평가)

  • Lee, Bongjik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.15-22
    • /
    • 2015
  • In this study, to evaluate the long-term behavior characteristics and the loss of prestress force, the long-term measurement of the tensile anchors in the actual construction was performed and the results were analyzed comparing with the existing estimation. As the reinforcement member used for the purpose of slope stability or uplift-resisting of the permanent structure, etc, the permanent anchor should maintain the functions during the performance period of the structure differently from the temporary anchor. However, as the time passes by, since the relaxation and the creep of the anchor occur constantly, the management for the loss of tensile force is essential to perform the functions stably. So far, the loss of the tensile force has been estimated according to the reduction of the prestress using elasticity theory and using the relaxation value according to the type of tension member and the test using the long-term measurement is limited. Therefore, in this study, the site condition and the ground were investigated for the tensile anchor in the actual construction and the long-term measurement results more than 500 days was analyzed by installing the loadcell, inclinometer and the groundwater level gauge. In addition, the long-term behavior characteristics were evaluated by comparing the disposition of the measured earth retaining wall and the tension force loss of the anchor with the existing interpretation results. In the evaluation results, the most of the tension force loss occurs within 90 days and the loss was measured less than the estimated values.

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.

Verification of Applicability of Emergency Recovery Scenario Applying Field Recovery Case (현장복구사례를 이용한 긴급복구 시나리오의 적용성 검증)

  • Yoon, Hyuk-Jin;Jung, Jae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.632-638
    • /
    • 2018
  • Recently, damage to waterside structures, such as bridges or retaining walls, is increasing due to typhoons, flooding, aging, etc. In such cases, the damage is not limited to the structures themselves, but can include effects on a wider scale, such as the suspension of and restriction of access to the facilities, human injury, economic loss, etc. To preclude such damage, recovery methods suitable for the particular field circumstances should be applied when damage occurs. By enforcing prompt repairs, the material and human damage and losses that can occur can be minimized. Since the impact of losses caused by damage and disaster increases with the elapse of time, emergency recovery is even more important. In the emergency recovery process, appropriate repair and reinforcement is crucial. In the present study, the derivation scenarios of the emergency recovery method were applied to some field recovery cases, and their applicability was verified by comparison with the recovery methods actually used. It is expected that the results of this study will be useful for practical application, by suggesting more appropriate recovery methods.

Technological Development Trends for Underground Safety in Urban Construction (도심지 공사시 지하안전 확보를 위한 기술개발 동향)

  • Baek, Yong;Kim, Woo Seok
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.343-350
    • /
    • 2017
  • Amid increasingly saturated ground space, development of underground space has been booming throughout the world and excavation has been underway near the structure above or under the ground level. But the ground subsidence caused by improper or poor construction technologies, underground water leakage, sudden changes of stratum and the problem with earth retaining system component has been emerged as hot social issue. To deal with such problems nationwide, establishment of preventive and proactive disaster management and rapid restoration system has been pushed now. In this study, collection of the data on technology development trend to secure the underground safety was made, taking into account of internal change elements (changing groundwater level, damage to underground utilities, etc) and external change elements (vehicle load, earthquake and ground excavation, etc) during excavation. Amid the growing need of ground behavior analysis, ground subsidence evaluation technology, safe excavation to prevent ground subsidence and reinforcement technology, improvement of rapid restoration technology in preparation for ground subsidence and development of independent capability, this study is intended to introduce the technology development in a bid to prevent the ground subsidence during excavation. It's categorized into prediction/evaluation technology, complex detect technology, waterproof reinforcement technology, rapid restoration technology and excavation technology which, in part, has been in process now.

Target Reliability Index of Single Gravel Compaction Piles for Limit State Design (한계상태설계를 위한 단일 쇄석다짐말뚝의 목표신뢰도지수)

  • You, Youngkwon;Lim, Heuidae;Park, Joonmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.5-15
    • /
    • 2014
  • Target reliability index in the limit state design indicated the safety margin and it is important to determine the partial factor. To determine the target reliability index which is needed in the limit state design, the six design and construction case histories of gravel compaction piles (GCP) were investigated. The limit state functions were defined by bulging failure for the major failure mode of GCP. The reliability analysis were performed using the first order reliability method (FORM) and the reliability index was calculated for each ultimate bearing capacity formulation. The reliability index of GCP tended to be penportional to the safety factor of allowable stress design and average value was ${\beta}$=2.30. Reliability level that was assessed by reliability analysis and target reliability index for existing structure foundations were compared and analyzed. As a result, The GCP was required a relatively low level of safety compared with deep and shallow foundations and the currd t reliability level were similar to the target reliability in the reinforced earth retaining-wall and soil-nailing. Therefore the target reliability index of GCP suggested as ${\beta}_T$=2.33 by various literatures together with the computed reliability level in this study.