• Title/Summary/Keyword: Earth parameter

Search Result 316, Processing Time 0.032 seconds

An Estimation Algorithm for the Earth Parameter and Resistivity using Artificial Neural Network (신경회로망을 이용한 대지파라미터와 대지저항률 해석 알고리즘)

  • Ryu, Bo-Hyuk;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.563-565
    • /
    • 2005
  • In this study, a algorithm to estimate Equivalent earth resistivity and Earth parameter using Artificial Neural Network(ANN) was proposed. Structures of the soil are grouped by using SOM algorithm before estimation. Earth parameter and Equivalent earth resistivity are obtained by using BP algorithm. The effectiveness of the proposed algorithm was verified. In the case study. afterwards, the algorithm proposed in this study will be used in more applications and gained more reliability.

  • PDF

A plastic strain based statistical damage model for brittle to ductile behaviour of rocks

  • Zhou, Changtai;Zhang, Kai;Wang, Haibo;Xu, Yongxiang
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.349-356
    • /
    • 2020
  • Rock brittleness, which is closely related to the failure modes, plays a significant role in the design and construction of many rock engineering applications. However, the brittle-ductile failure transition is mostly ignored by the current statistical damage constitutive model, which may misestimate the failure strength and failure behaviours of intact rock. In this study, a new statistical damage model considering rock brittleness is proposed for brittle to ductile behaviour of rocks using brittleness index (BI). Firstly, the statistical constitutive damage model is reviewed and a new statistical damage model considering failure mode transition is developed by introducing rock brittleness parameter-BI. Then the corresponding damage distribution parameters, shape parameter m and scale parameter F0, are expressed in terms of BI. The shape parameter m has a positive relationship with BI while the scale parameter F0 depends on both BI and εe. Finally, the robustness and correctness of the proposed damage model is validated using a set of experimental data with various confining pressure.

An Estimation Algorithm for the Earth Parameter using Artificial Neural Networks (신경회로망을 이용한 대지파라미터 추정)

  • Ji, P.S.;Han, W.D.;Lim, J.H.;Park, E.K.;Jung, J.Y.;Kim, K.B.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.368-371
    • /
    • 2009
  • Earth parameters me essential to design and analysis of earth. In this study, a algorithm to estimate earth parameter using artificial neural network(ANN) was proposed. Structures of the soil are grouped by using KSOM algorithm before estimation. Earth parameter is obtained by using BP algorithm. The effectiveness of the proposed algorithm was verified in the case study.

  • PDF

Development of the ANN for the Estimation of Earth Parameter and Equivalent Resistivity

  • Ji Pyeong-Shik;Lee Jong-Pil;Shin Kwan-Woo;Lim Jae-Yoon;Kim Sung-Soo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.350-356
    • /
    • 2005
  • Earth equipments are essential to protect humans and other types of equipment from abnormal conditions. Earth resistance and potential must be restricted within a low value. An estimation algorithm of earth parameters and equivalent resistivity is introduced to calculate reliable earth resistance in this research. The proposed algorithm is based on the relationship between apparent resistances and earth parameters. The proposed algorithm, which approximates the non-linear characteristics of earth by using the Artificial Neural Network (ANN), estimates the earth parameters and equivalent resistivity. The effectiveness of the proposed method is verified with case studies.

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS (실시간 응용을 위한 GPS 정밀 궤도력 결정)

  • 임형철;박필호;박종욱;조정호;안용원
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.129-136
    • /
    • 2001
  • The accuracy of GPS applications is heavily dependent on the satellite ephemeris and earth orientation parameter. Specially applications like as the real time monitoring of troposphere and ionosphere require real time or predicted ephemeris arid earth orientation parameter with very high quality. IGS is producing IGS ultra rapid product called IGU for real time applications which includes the information of ephemeris and earth orientation. IGU is being made available twice everyday at 3:00 and 15:00 UTC arid covers 48 hours. The first 24 hours of it are based on actual GPS observations and the second 24 hours extrapolated. We will construct the processing strategy for yielding ultra rapid product and demonstrate the propriety through producing it using 48 hours data of 32 stations.

  • PDF

Linear system parameter as an indicator for structural diagnosis of short span bridges

  • Kim, Chul-Woo;Isemoto, Ryo;Sugiura, Kunitomo;Kawatani, Mitsuo
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • This paper intended to investigate the feasibility of bridge health monitoring using a linear system parameter of a time series model identified from traffic-induced vibrations of bridges through a laboratory moving vehicle experiment on scaled model bridges. This study considered the system parameter of the bridge-vehicle interactive system rather than modal ones because signals obtained under a moving vehicle are not the responses of the bridge itself but those of the interactive system. To overcome the shortcomings of modal parameter-based bridge diagnosis using a time series model, this study considered coefficients of Autoregressive model (AR coefficients) as an early indicator of anomaly of bridges. This study also investigated sensitivity of AR coefficients in detecting anomaly of bridges. Observations demonstrated effectiveness of using AR coefficients as an early indicator for anomaly of bridges.

NEAR-IR PHOTOMETRIC PROPERTIES OF HB, MSTO, AND SGB FOR METAL POOR GALACTIC GLOBULAR CLUSTERS

  • Kim, J.W.;Kang, A.;Shin, I.G.;Chun, S.H.;Sohn, Y.J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • We report photometric features of the HB, MSTO, and SGB for a set of metal-poor Galactic globular clusters on the near-IR CMDs. The magnitude and color of the MSTO and SGB are measured on the fiducial normal points of the CMDs by applying a polynomial fit. The near-IR luminosity functions of horizontal branch stars in the classical second parameter pair M3 and M13 indicate that HB stars in M13 are dominated by hot stars that are rotatively faint in the infrared, whereas HB stars in M3 are brighter than those in M13. The luminosity functions of HB stars in the observed bulge clusters, except for NGC 6717, show a trend that the fainter hot HB stars are dominated in the relatively metal-poor clusters while the relatively metal-rich clusters contain the brighter HB stars. It is suggestive that NGC 6717 would be an extreme example of the second-parameter phenomenon for the bulge globular clusters.

TIDAL EVOLUTION OF LUNAR ORBIT AND EARTH ROTATION

  • Na, Sung-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • In this study, I calculate the past and future dynamical states of the Earth-Moon system by using modified Lambeck's formulae. I find that the ocean tidal effect must have been smaller in the past compared to its present amount. Even though the Moon is already in the spin-orbit synchronous rotational state, my calculation suggest that it will not be in geostationary rotational state in the next billion years or so. This is due to the associated Earth's obliquity increase and slow retardation of Earth's spin and lunar orbital angular velocities. I also attempt to calculate the precessional period of the Earth in the future. To avoid uncertainties in the time scale, the future state is described by using the Earth-Moon distance ratio as independent parameter. Effects due to solar tidal dissipation are included in all calculations.

Evaluation on the Performance of Design Parameters in Earth Tube System (지중튜브시스템 주요 설계 변수의 성능 평가)

  • Hwang, Yong-Ho;Hwang, Seok-Ho;Choi, Jeong-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.87-94
    • /
    • 2016
  • Earth tube system can be installed in many ways. However, performance data on earth tube system is still insufficient. Therefore, in this study seven design parameters of earth tube systems were chosen such as underground earth tube length, depth, tube thermal conductivity, thickness, radius, soil conditions, and fan type. And the change effects in the values of the seven parameters on earth tube exit temperatures and heat transfer rate were examined through Energyplus simulations.