• Title/Summary/Keyword: Earth construction

Search Result 1,220, Processing Time 0.028 seconds

A Study on the Construction Process Management of the Top-Down Construction Method (Top-Down 공사의 공정관리 방법 연구)

  • Kang Hyun-Jung;Rhim Hong-Chul;Lee Ghang;Yun Dae-Jung;Kim Sang-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.133-136
    • /
    • 2006
  • The top-down construction method is an excavation and substructure construction method by excavating earth and building slabs from the ground level to the bottom of a building. The top-down method can be categorized into several types by its process and other technical details. Some of commonly used top-down methods in Korea today are S.O.G., N.S.T.D., and S.P.S. Among these, one method is chosen depending on construction field conditions, cost, construction time and so on. This study explores several factors that may affect the selection of a top-down method. This paper reports preliminary survey results with 54 top-down construction experts and comparison results of 5 top-down construction sites.

  • PDF

CONSTRUCTION EQUIPMENT ACTIVITY RECOGNITION FROM ACCELEROMETER DATA FOR MONITORING OPERATIONAL EFFICIENCY AND ENVIRONMENTAL PERFORMANCE

  • Changbum R. Ahn;SangHyun Lee;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.188-195
    • /
    • 2013
  • Construction operations generate a significant amount of air pollutant emissions, including carbon emissions. The environmental performance of construction operations is closely relevant to the operational efficiency of each resource employed, which indicates how efficiently each resource (e.g., construction equipment) is utilized. In this context, monitoring the operational efficiency of construction equipment provides key information in managing and improving the environmental performance and productivity of construction operations. In this paper, we report our efforts to measure the operational efficiency of construction equipment, using low-cost accelerometers. An experimental study and real-world case studies are conducted to demonstrate the feasibility of the proposed approach. The results have shown the potential of this approach as an economically feasible means of monitoring the environmental performance of construction operations.

  • PDF

Development and Application of Large-diameter Cut-hole Exploration System for Assessment of the Geological Condition beyond NATM Tunnel Face (NATM 터널의 굴착면 전방 지질 평가를 위한 대구경 심발공 탐사 시스템 개발 및 적용 사례)

  • Kim, Minseong;Jung, Jinhyeok;Lee, Jekyum;Park, Minsun;Bak, Jeonghyeon;Lee, Sean Seungwon
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Recently, the development of underground space has been accelerated with rapid urbanization, and it is significantly important for safe construction to accurately understand the geological conditions of the section when excavating rocks. In this paper, a boring alignment tracking and geological exploration system have been developed to identify the geological conditions beyond the excavation face by utilizing a MSP method that bores a large empty hole to reduce blast-induced vibration. The major advantage of the proposed exploration system is that we can obtain the ground condition of 50 m ahead of the excavation face through exploration along blast cut-holes drilled for the NATM tunnel construction. In addition, we introduce several case histories regarding the assessment of the geological conditions beyond the tunnel face by monitoring the inside of large empty holes using the proposed hole exploration system.

Shear Strength Characteristics of Unconsolidated-Undrained Reinforced Decomposed Granite Soil under Monotonic and Cyclic Loading (정.동적 하중에 의한 비압밀비배수 보강화강풍화토의 전단강도 특성)

  • Cho, Yong-Sung;Koo, Ho-Bon;Park, Inn-Joon;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.13-21
    • /
    • 2006
  • When enforced earth is used for the retain wall and four walls, the most important thing would be how to maximize the land utilization. Accordingly, in case of enforced earth, we pile up the minimal height of earth ($20{\sim}50\;cm$) and harden the earth using a static dynamic hardening machine. In this paper, we tried to analyze and compare the stress transformation characteristics of reinforced weathered granite soil with geosynthetics when repetitive load is added to the enforced earth structure and when static load is added. The result is that the cohesion component of the strength increased greatly and the friction component decreased slightly.

Comparing Performances of Natural Finishing Material for Finish on Earth Wall (흙벽 마감을 위한 천연 마감재 성능 비교 연구)

  • Hwang, Hey zoo;Kang, Nam Yi;Kim, Tae Hoon
    • KIEAE Journal
    • /
    • v.12 no.5
    • /
    • pp.71-76
    • /
    • 2012
  • As reviewed of developments of Korean earth architecture, earth-made buildings have been dwindled gradually since "the new community movement" and earth have been recognized as materials which are not so good to human health and in result, earth-related techniques have been also forgotten. However, recently the earth architecture has been more attracting back many attentions thanks to the people who are interested in health and wellbeing and the earth related techniques or skills got keenly required. The present study has investigated and reproduced earth finishing materials which are based on natural materials as basic stuffs to use them as the finishing materials of the modern earth architecture. For the test, the finishing materials have been divided roughly into sorts of pastes and oils. In case of applying finishing materials onto earth surfaces, the moisture permeability test was conducted to measure a water-absorbing speed, and at the case of using finishing materials for interior works moisture adsorption/desorption test was performed to verify the indoor humidity regulation ability, and further a test to check whether to be stained when contacted with the finishing materials, was conducted. If there is not any stain it might be recognized to be high quality of moisture adsorption/desorption and so seaweed pastes or starches might be used for paste finishing materials and for natural oils, beans are desirable in practical ways. As low-quantity of moisture adsorption materials, linseed oil is most desirable and also beaned water over75% are thought to be useful.

Finite Element Analysis of Reinforced Earth Wall Behavior (보강토 옹벽의 거동에 관한 유한요소 해석)

  • 최인석;장연수;조광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.805-812
    • /
    • 2003
  • The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.

  • PDF

Evaluation of ALOS PALSAR Interferometry in the West Coast of Korea;Preliminary Results

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.25-28
    • /
    • 2007
  • Precise digital elevation model (DEM) is an important issue in coastal area where DEMs in a time series are especially required. Although LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise coastal DEM have been made using radar interferometry, waterline method. One of these methods, Spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. The purpose of this study is construction of DEM using the ALOS PALSAR data using radar interferometry and analysis of surface characteristics by coherence and magnitude map over the Ganghwado and Siwha tidal flats and near coastal lands.

  • PDF

FORM Reliability-based Resistance Factors for Driven Steel Pipe Piles (FORM 신뢰성 기반 항타강관말뚝 저항계수 산정)

  • Park, Jae-Hyun;Huh, Jung-Won;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.779-783
    • /
    • 2008
  • LRFD Resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the freamework of reliability theory. Reliability analysis was performed by the First Order Reliability Method (FORM) using resistance bias factor statistics.The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

  • PDF

Static behaviors of self-anchored and partially earth-anchored long-span cable-stayed bridges

  • Xie, Xu;Yamaguchi, Hiroki;Nagai, Masatsugu
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.767-774
    • /
    • 1997
  • In this paper, three dimensional static behaviors of the self-anchored and partially earth-anchored cable-stayed bridges, with a span of 1400 meters, under wind loading are studied by using a 3D geometrical nonlinear analysis. In this analysis, the bridges both after completion and under construction are dealt with. The wind resistant characteristics of the both cable-stayed systems are made clear. In particular, the characteristics of the partially earth-anchored cable systems, which is expected to be a promising solution for extending the span of the cable-stayed systems further, is presented.

Testing and Numerical Analysis Techniques for Pull-out Resistance Characteristics of the Extensible Geogrid (신장성 지오그리드 보강재의 인발저항특성 평가를 위한 시험 및 수치해석 기법)

  • 이성혁;고태훈;이진욱;황선근
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.93-103
    • /
    • 2002
  • Reinforced earth structure has been regarded as general structure in order to achieve efficient land utilization as well as securing safety in railway service lines in other countries, but there are no construction actual results in Korea. In this study, the soil-geogrid interaction mechanism was investigated experimentally and numerical analysis was performed to predict Pull-out behaviour of geogrid embedded in reinforced earth body. This experimental data and analysis result can not contribute to understand the soil-geogrid interaction mechanism at soil-geogrid interface but also be used in design practice of the railway reinforced earth structures.