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ABSTRACT: Construction operations generate a significant amount of air pollutant emissions, including carbon 

emissions. The environmental performance of construction operations is closely relevant to the operational efficiency of 

each resource employed, which indicates how efficiently each resource (e.g., construction equipment) is utilized. In this 

context, monitoring the operational efficiency of construction equipment provides key information in managing and 

improving the environmental performance and productivity of construction operations. In this paper, we report our efforts 

to measure the operational efficiency of construction equipment, using low-cost accelerometers. An experimental study 

and real-world case studies are conducted to demonstrate the feasibility of the proposed approach. The results have 

shown the potential of this approach as an economically feasible means of monitoring the environmental performance of 

construction operations. 
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1. INTRODUCTION 

The environmental impact from construction operations 

has largely been underestimated, even though these 

operations constitute significant economic activity. They 

account for a substantial amount of Greenhouse Gases 

(GHGs) and other diesel emissions, such as nitrogen 

oxide (NOx) and particulate matter (PM). There has been 

extensive research on assessing the energy use and 

emissions from each single source utilized in construction 

operations [1-4]. Data on energy use and emissions at the 

project level is limited, however [5-6]. The assessment of 

energy use and emissions at the project level in the 

planning phase always has a great deal of uncertainty due 

to unexpected deviations between as-planned and as-built 

conditions. The continuous monitoring of the 

environmental performance is therefore essential for 

taking timely corrective actions to eliminate the causes of 

a discrepancy between the planned and actual level of 

energy use and emissions. 

Currently, the only available data to check the 

environmental performance of a construction project is 

the daily report on the use of equipment, which tracks 

how many pieces of equipment are deployed on a jobsite 

in daily operations. This data is used to quantify the 

environmental impact of equipment in most LCA research 

on construction processes [7-8]. However, two key pieces 

of information for environmental performance monitoring 

are missing in these reports: actual usage (operation hours) 

and operational efficiency of construction equipment. In 

particular, the operational efficiency, which indicates how 

efficiently a resource (e.g., construction equipment) is 

utilized, greatly affects the environmental performance of 

construction operations, considering its great variability 

therein. Ahn and Lee [9] thus formulated the relationship 

between environmental performance and operational 

efficiency, and presented a methodology for incorporating 

the analysis of operational efficiency into the assessment 

of the environmental performance of construction 

operations. They defined the Operating Equipment 

Efficiency (OEE) as a measurable metric for the 

operational efficiency of each resource, as the ratio of 

valuable (non-idle) operating time to total operating time. 

The OEE of construction equipment in typical 

construction operations is not that high. For example, the 

average OEEs of all Komatsu excavators in Colorado and 

Wyoming are reported to be approximately 65%, which 

means that the excavators spend 35% of their operating 

time idling [10]. This indicates that the monitoring of 

OEE is also essential for productivity improvement. 

Several emerging technologies exist that allow for the 

accurate monitoring of equipment use, but they are still 

not practical due to economic infeasibility and 

technological incompatibility. The application of low-cost 

accelerometers has the potential to address the challenges 

of existing technologies by providing a low-cost and non-

intrusive monitoring system of the equipment operation. 

To this end, this paper presents a system to measure the 

operational efficiency of construction equipment using 

accelerometers, and evaluates the system’s feasibility in a 

real-world application. The paper begins with a review of 

the emerging technologies for monitoring environmental 
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performance and operational efficiency. Then, the 

remaining sections of the paper describe the experiment 

and case studies that were conducted to evaluate the 

approach used in this paper.  

2. BACKGROUND  

2.1 Enabling Technologies for Environmental 

Monitoring 

Portable Emission Measurement Systems (PEMS), 

which are designed to test or assess mobile source 

emissions for internal-combustion engine vehicles under 

real-world conditions, are widely used to verify the 

emission rate of construction equipment, since they can 

provide very accurate data on the amount of exhaust 

emissions. PEMS are, however, too costly to be 

employed for the simultaneous monitoring of a number of 

energy/emission sources in a project, so their use is 

limited to the measurement of engine emissions for 

research purposes. On the other hand, construction 

equipment has on-board diagnostics (OBD) systems (e.g., 

OBD-II, EOBD, JOBD, and CAN bus), which allow for 

the continuous monitoring and recording of engine 

operational status (e.g., RPM, fuel consumption rate, axle 

speed, coolant temperature, and engine load). The 

recorded data can be accessible via on-board diagnostic 

software (in recently manufactured models) or off-board 

diagnostic tools [11]. However, there is a compatibility 

issue between different manufacturers due to a lack of 

standardized protocol. Moreover, old equipment—which 

is the majority of equipment in use—does not have OBD 

supports, and even a piece of equipment with OBD 

supports requires extensive modification or the 

installation of additional devices.  

2.2 The application of accelerometers in construction 

An accelerometer is an electromechanical device that 

measures acceleration force. With the recent advent of 

small-sized and low-cost microelectromechanical 

(MEMS) accelerometers, accelerometers are widely used 

for various applications. For example, MEMs 

accelerometers are embedded in most smartphones in 

order to sense the movements of smartphone users. 

The construction industry is no exception. MEMS 

accelerometers have been widely used for the health 

monitoring of structures by sensing the structures’ 

vibrations [12]. Joshua and Varghese [13] attempted 

activity recognition of construction workers from 

accelerometer data. Accelerometers have also been used 

for control and condition monitoring of internal 

combustion (IC) engines in vehicles, including 

construction machines [14]. The basic underlying idea of 

such applications is that every moving component or 

physical process involved in the operation of an engine 

produces its own unique vibration signal, which is 

referred to as the vibration signature. Vibration signatures 

are assumed to exhibit the same features when created by 

the same engine operating under the same conditions. For 

conditioning monitoring of IC engines, expensive 

conventional accelerometers are generally used, since 

condition monitoring requires a high level of precision in 

sensing vibrations [15].  

Compared to conditioning monitoring, measuring 

equipment operational efficiency by detecting the activity 

modes of equipment (e.g., engine off, idle, working) is 

assumed to be a simpler application that can be 

achievable with MEMS accelerometers. This is because 

different activity modes exhibit a clear difference in 

vibration signatures, while condition monitoring of IC 

engines (e.g., engine fault) relies on a more subtle 

difference. In this context, this paper evaluates the 

feasibility of using MEMS accelerometers as a monitor of 

the operational efficiency. 

3. RESEARCH OBJECTIVE AND 

METHODOLOGY 

The objective of this research is to test the hypothesis 

that signals captured by MEMS accelerometers that are 

installed to construction equipment can be used to 

analyze the operating equipment efficiency of that 

equipment, which indicates the ratio of the valuable 

operating time (non-idling) to the total operating time of 

the equipment. More specifically, the research aims to 

demonstrate the feasibility of the classification of the 

operation of construction equipment into three activity 

modes—such as working, idling, and engine-off—based 

on signals captured by a sensor. The underlying idea of 

the hypothesis is twofold: first, any non-stationary 

operating of construction equipment (e.g. driving) will 

create a notable level of acceleration that can be detected 

by a sensor; second, any stationary operating of 

construction equipment (e.g. controlling excavators’ 

boom) will generate distinguishable patterns of vibration 

signals compared to the idling and engine-off modes. The 

former idea has already been demonstrated by the 

application of accelerometers to detect passenger vehicle 

motion [15], but the latter idea needs to be demonstrated 

due to limited previous studies on the vibration of 

construction vehicles.  

In this context, the initial experiment is designed to 

measure and analyze vibration signals captured during the 

stationary operating of construction equipment. The 

experimental result is analyzed in the time domain, and 

the effect of equipment activity modes on vibration 

signals is tested using analysis of variance (ANOVA). 

Next, case studies are conducted in order to evaluate the 

feasibility of the proposed approach in the real-world 

applications that involves the stationary and non-

stationary operating of equipment. The effect of 

equipment activity modes on vibration signals is also 

statistically analyzed, and the feasibility of detecting 

operational efficiency using signals from an 

accelerometer is evaluated based on an overall error rate.  

Acceleration signals from construction vehicles under 

the study were measured using a sensor (accelerometer) 

mounted inside the cabin of vehicles, and the operation of 

construction vehicles during the study was videotaped. 

The sensor used was the one embedded in a smartphone, 

which can sense acceleration in the x-, y-, and z-

directions. The sensitivity of the sensor was 16.2 mg 
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(milli-g)/digit, and its measurement range was ±2g. The 

signals acquired by an accelerometer are sampled at a rate 

of 100 Hz. The mounting location of a sensor varies by 

vehicles, but it is generally mounted on a rigid block 

around the control system within the cabin of vehicles. 

Video recordings of vehicle operations are used to label 

actual operational modes of second-by-second vehicle 

operation; a vehicle is determined to be idling if it does 

not show any physical movement for more than three 

seconds, regardless of its engine status. 

4. EXPERIMENTAL ANALYSIS 

The experiment is designed and conducted to analyze 

signals from a stationary operating of construction 

equipment. The goal of the experiment design is to 

provide conditions that would generate the greatest 

difficulty in detecting the difference of vibration signals 

among stationary operating, idling, and engine-off modes. 

For this purpose, a recently manufactured excavator is 

chosen, as newer vehicle models usually generate a lower 

level of vibration due to the advance of vibration control 

technologies. Then, the operator is asked to idle for 

several seconds after turning on the excavator, then very 

slowly swing up and down the boom of the excavator 

without moving the body during the experiment.  

The signals are captured for around 87 seconds. Figure 

1 shows vibration signals in three axes after detrending; 

detrending is a preprocessing step to subtract the mean 

value from time-series signal data. The signal patterns in 

the three axes are found to be identical in terms of 

increasing and decreasing trends, but the levels of 

amplitudes in the three axes are different. The operational 

mode of each time segment was determined based on a 

video recording. The excavator was in engine-off mode 

from 0 ~ 20 sec and 82 ~ 82 sec, in idling mode from 21 

~ 33 sec and 71~ 81 sec, and in stationary working mode 

from 34 ~ 70 sec. Different activity modes are observed 

to have different levels of amplitude variability. When the 

engine is turned on and off, spikes in the signal are 

observed. The spikes at around 85 seconds are assumed to 

be caused by external noise (most likely from the operator 

unintentionally hitting the accelerometer).  

 

Figure 1. Acceleration time histories in the Experiment 

 

Different levels of amplitude variability by activity 

modes inspire a comparison of the root mean square 

(RMS) value of signals between different activity modes. 

The RMS value of a vibration signal is a time analysis 

feature that represents the power content in the vibration 

signature [16]. Although RMS is not an inherent signal 

processing technique, it is a widely used feature in signal 

processing and classification due to its simplicity. The 

RMS value for the x-axis is calculated as: 
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where N is the total number of points in a time series 

and M is the number of points in time series interval used 

in analysis. The RMS values for the y- and z-axis data 

can be combined to form the RMS acceleration vector 

magnitude, as follows: 
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Figure 2 shows the RMS values in regular time 

intervals (1 second). The RMS values are classified into 

three groups based on the activity mode of their time 

frame. In this procedure, 2 time frames that include signal 

spikes due to the engine turning on and off are discarded. 

Figure 3 shows a box plot of the distribution of three 

groups; the data points are drawn as outliners if they are 

larger than the 75th percentile or smaller than the 25th 

percentile by 1.5 times of the interquartile range. The 

RMS value of the engine-off group indicates the level of 

noise, and it is observed that any operation of the 

equipment including idling generates a distinguishable 

level of the vibration amplitude compared to the noise. 

Also, idling and stationary operating groups have 

different ranges of the value, although the lower boundary 

of the stationary operating group (between the smallest 

value and the 25th percentile) overlaps with the idling 

group; it is thought that the data points in the overlapped 

range represent the time frames in transient mode 

between stationary operating and idle modes. 

 

Figure 2. RMS value of a time series in the Experiment 
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Figure 3. Box-plot of RMS values of different activity 

modes in the Experiment 

The data shown in Figure 3 were further employed for 

ANOVA to confirm that each group has statistically 

significantly different distribution of RMS values from 

others. The results of ANOVA are listed in Table 1. It is 

clear from Table 1 that the RMS value of the signals, 

which represents the vibration amplitude, is influenced by 

the activity mode of the excavator. This result 

demonstrates that engine-off, idling, and stationary 

operating of an excavator generates distinguishable 

patterns of vibration signals, and that the RMS value of 

vibration signals is a good signal feature in classifying the 

time frames of construction vehicle operating into 

different activity modes. One challenging issue is the 

uncertainty of the boundary estimate, which arises due to 

the transient mode of equipment between working and 

idle modes.  

 

Table 1. Analysis of variation in the Experiment 

Source Sum Square  Degree of 

freedom 

Mean square F ratio P value 

Activity mode 4891.17 2 2445.59 66.97 0 

Error 3067.55 84 36.52   

Total 7958.73 86    

 

5. CASE STUDIES 

This section describes the case studies conducted in 

order to evaluate the feasibility of monitoring the 

operational efficiency of construction vehicles in real-

world operational settings using the signals captured by 

an accelerometer. The main focus is how reliably the 

idling can be detected in a real-world operation of 

construction vehicles that involves the various types of 

the stationary and non-stationary operation of equipment. 

Three different excavators that perform various real-

world work tasks are chosen for the case studies. 

The RMS value is selected as a feature for classifying 

the signals, based on the result of the previous 

experimental analysis. Each time frame in case studies is 

classified into working and idle modes, based on the 

RMS value. The classification errors are then identified 

based on the comparison with visual observations. There 

are two types of errors, working errors and idling errors. 

The former error indicates that the time frames known to 

contain working are not classified as working modes. The 

latter error indicates that the time frames known to 

contain idling are not classified as idling modes. An 

overall classification error rate, a working error rate, and 

an idling error rate are then calculated as: 
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where Err, Errw, and Erri are an overall classification error 

rate, a working error rate, and an idling error rate, 

respectively. Nw and Ni are the total number of time 

frames that are known as working and idling. NErrw and 

NErri are the number of working error and idling error 

time frames.  

The possible minimum value of an overall classification 

error rate in each case study is assessed as a mean of 

evaluating the feasibility of the proposed approach. A 

minimum error rate is determined as follows: each RMS 

value existing in a range between the 75th percentile 

value of the idling RMS distribution and the 25th 

percentile value of the working RMS distribution in each 

case study is chosen as a threshold RMS value that works 

as a classifier to distinguish working and idling time 

frames; overall classification error rates using each 

threshold value are calculated, and a minimum value 

among them is reported. 

 

5.1 Case study 1 

The first case study is conducted for a medium-sized 

crawler excavator that was analyzed in the previous 

experiment. The excavator is performing real-world 

utility work that involves digging a trench and placing 

wooden trench boxes. The observation ran for around 30 

minutes, during which time the excavator was kept 

running and was not turned off. While digging a trench 

required quite tumultuous actions of the excavator, 

placing wooden trench boxes involved relatively modest 

actions. 

The clear difference of the RMS distribution between 

working and idle time frames is found; the statistical 

analysis using t-test (P<0.01) confirms that the activity 

mode of the excavator affected the RMS values of time 

frames. The RMS threshold value that generates a 
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minimum error rate is determined to be 11.5 mg, based on 

the previously described algorithm. Figure 4 shows the 

result of the classification using this RMS threshold value. 

The time frames that have lower RMS values than the 

threshold are marked as dark gray bars and the time 

frames that are truly in an idling mode are marked with 

dotted-line boxes. The overall error rate is assessed as 8%, 

while the working error rate is assessed as 3%, and the 

idling error rate is assessed as 25%.

 
Figure 4. Comparison of idling periods between the observation (dotted-line box) and the energy analysis of vibration 

signals (dark gray bars) in Case Study 1 

 

5.2 Case study 2 

The second case study analyzed a medium-sized 

wheeled excavator that performs debris-clearing and 

destroys existing pavement. The difference of the 

undercarriage type is expected to affect vibration patterns 

and amplitude. In addition, the wheeled excavator is 

equipped with stabilizers to provide better lifting 

performance during stationary operating, and the use of 

the stabilizers would affect vibration patterns and 

amplitude. Two independent observations are made; one 

lasting around 30 minutes, the other around 60 minutes. 

During the first observation, the excavator mainly cleared 

and moved waste, and processed debris with another 

bobcat. During the second observation, the excavator 

mainly demolished existing ground pavement, with its 

stabilizers down. The sensor was installed for each 

observation, so the mounting location and orientation 

changed. 

The statistical analysis using t-test (P<0.01) confirms 

the difference of the RMS values between working and 

idle time frames in both observations. Another point of 

interest in this case study is whether and to what extent 

the change of mounting conditions (location and 

orientation) of the sensor affects the vibration amplitude 

(RMS values) of the idling time frames and the RMS 

threshold value for the classification. The first 

observation is found to have a difference in the RMS 

distribution of the idling time frames compared to the 

second observation, in terms of the interquartile range. 

However, they have a similar level of mean values and 

RMS threshold values that generate a minimum error rate. 

This indicates that a possible deviation of sensor 

mounting conditions may not significantly impact the 

accuracy of the classification.  

The RMS threshold value that generates a minimum 

error rate is determined to be 35 mg and 36.5 mg in the 

first and second observations, respectively. Figure 5 

shows the result of the classification using these RMS 

threshold values. The overall error rates in the first and 

second observations are assessed to be 9% and 4%, 

respectively, while the working error rates are assessed to 

be 9% and 2%, and the idling error rates 11% and 9%. 

The type of work that the equipment performs is found to 

affect the classification error rate. In this case study, the 

demolition work that involved actions with high engine 

torque and power output resulted in a better accuracy in 

the classification. 

 

5.3. Case study 3 

A large-sized excavator that bored holes for dewatering 

using a vibratory pile driver is chosen for the third case 

study. The performed work repeated the working cycle 

that consisted of moving, locating the pile driver, driving 

the pile, and pulling out the pile. While driving the pile 

generated an excessive level of vibration, moving and 

locating the pile driver involved a very modest level of 

vibration.  

The difference of the RMS values between working and 

idle time frames is confirmed through a t-test (P<0.01). 

The RMS threshold value that generates a minimum error 

rate is determined to be 73 mg, based on the previously 

described algorithm. Figure 6 shows the result of the 

classification using this RMS threshold value.  The 

overall error rate is assessed to be 7%, while the working 

error rate is assessed to be 6%, and the idling error rate 

10%. Locating and calibrating the pile driver at the start 

of each production cycle involves sporadic pauses of the 

excavator motion that caused a difficulty in the 

classification even with the visual observation. Those 

time frames were found to be error-prone. 

192



 

 
Figure 5. Comparison of idling periods between the observation (dotted-line box) and the energy analysis of vibration 

signals (dark gray bars) in Case Study 2 - (top) 1st observation; (bottom) 2nd observation 

 
Figure 6. Comparison of idling periods between the observation (dotted-line box) and the energy analysis of vibration 

signals (dark gray bars) in Case Study 3. 

 

5.4. Results and Analyses 

The primary focus of the case studies is on the detecting 

accuracy of the actual versus measured values of the 

operating equipment efficiency, which is the ratio of 

valuable operating time to total operating time. Table 2 

summarizes the actual and measured operating equipment 

efficiency values of the case studies. The classification 

errors in the case studies created a deviation between the 

actual and measured operating equipment efficiency. 

However, such deviations are found to be quite small 

(within ±3) compared to the classification error rates, 

because working errors and idling errors somewhat offset 

each other in the assessment of the operating equipment 

efficiency. 
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In addition, the classification errors can be greatly 

alleviated with a more practical definition of the idling 

period. In the case study, the manual observation 

determined that the excavator was idling if it did not 

show any physical movement for more than three seconds, 

regardless of its engine status. During idling, however, 

excavators’ engines typically go through four sub-modes: 

low idle, transient between low and high idle, high idle, 

and transient between high idle and non-idle [17]. When 

the operator is ready to start using the bucket, he/she 

increases the engine idle speed to a high idle mode, which 

is run at a higher engine revolutions per minute (RPM) 

than a low idle mode. Therefore, during short idling 

periods, the excavator may have run at high idle or 

transient modes, rather than at a low idle mode, whereas 

it may have run mostly at a low idle mode during long 

idling periods. This would explain a high error rate in 

detecting short idling periods, and a low error rate in 

detecting long idling periods. In a real-world operation, a 

three-second-long pause of the equipment motion often 

occurs between the change of motion (body direction or 

initiating boom use). In the case that we regard such short 

pauses as the continuation of the valuable operating, and 

define idling with a longer period of continuous motion 

pause, the accuracy of the classification would greatly 

improve, by allowing the discard of idle errors in short 

idling periods. For example, when we regard short pauses 

(less than 10 seconds) of the excavator as the valuable 

operating time, the classification error in Case Study 1 

reduces to 5%. 

The signal produced by the accelerometer is dependent 

on the relative orientation of the accelerometer based on 

the direction of Earth’s gravity. Integrating signals from 

three axes was expected to minimize the effect of the 

mounting orientation of the accelerometer, but failed to 

completely disregard such effect, since the detrend 

process of raw data and data floating limits creates a 

difference of steady state RMS values by the mounting 

orientation. Therefore, in the case that the equipment 

body tilts slightly during its operation, the baseline of 

vibration signals was affected and sometimes 

classification errors occurred. This type of error will be 

addressed with the use of another signal feature for the 

classification (e.g. kurtosis, crest factor) or the adoption 

of advanced signal processing techniques (e.g. spectral 

analysis). On the other hand, external noises (e.g. 

unintended knock on the sensor) created a spike in the 

signals and sometimes caused classification errors. This 

type of error can also be addressed with the use of 

filtering techniques, which can smooth out short-term 

fluctuations and highlight longer-term trends. 

In summary, the level of classification errors found in 

the case studies is acceptable for an environmental 

monitoring application, since (1) the effects of this level 

of classification errors on the accuracy of measuring the 

operating equipment efficiency are not significant, and (2) 

the classification errors would be greatly reduced with the 

practical definition of equipment idling.  

 

 

Table 2. Summary of case study results 

 Equip. Specs. 

(HP, model year) 

Performed 

Work 

Classification 

Error (%) 

Operating Equipment Efficiency 

Actual Measured Deviation 

Case 1 
Crawler type,  

(148 hp, 2010) 

Trench and 

install utility 
8% 79% 81% +2 

Case 2 
Wheeled type 

(160 hp, 2006) 

1
st
 - Clear debris 

2
nd

 - Demolition 

10% 

 4% 

69% 

74% 

66% 

75% 

-3 

+1 

Case 3 
Crawler type,  

(270 hp, 2004) 

Drill dewatering 

holes 
7% 80% 77% -3  

 

 

6. CONCLUSIONS AND FUTURE 

DIRECTIONS 
This paper presented a system to measure the 

operational efficiency of equipment. Its feasibility in a 

real-world operation was demonstrated by assessing the 

accuracy in case studies.  Case studies represented 

diverse equipment configuration (e.g. different gear types, 

engine sizes, and model year) and various duty cycles that 

an excavator can have. It is thus envisioned that the 

results from case studies can be generalized to most types 

of excavators. 

The presented approach has significant advantages over 

other emerging technologies in terms of economic 

feasibility. In addition, it ensures technological 

compatibility with any equipment by providing a non-

intrusive measure that does not require any connection 

with a legacy engine system. Also, this method has an 

advantage over Global Positioning System (GPS)-based 

equipment tracking system that is prevalent in the 

construction industry, in that it can detect the operation of 

construction equipment in a stationary mode. The 

presented approach will potentially offer a significant 

contribution to the enhancement of productivity 

monitoring, as well as environmental performance 

monitoring. 

However, many challenges exist for the implementation 

of the presented approach. For example, the method of 

data transfer and synthesis from accelerometers that are 

installed to each piece of equipment needs to be 

investigated. In addition, the expansion of emission factor 

database that will allow converting measured OEE from 

the presented approach to emission amounts. The future 

direction of this research will focus on tackling those 

challenges. Furthermore, future research will apply 

machine learning techniques to improve the accuracy and 

minimize the subjectivity in determining the classifier 

value. The current approach in the classification of 

second-by-second equipment operation depends mainly 
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on one feature of the signals for the purpose of testing the 

approach’s feasibility. However, utilizing multiple 

features of signals could greatly improve the accuracy of 

the classification. In addition, the current approach is 

based on supervised learning that requires a training 

process, and this would require the calibration process for 

each piece of construction equipment. The development 

of a classification algorithm based on unsupervised 

learning has the potential to minimize the training process 

of the monitoring system. 
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