• Title/Summary/Keyword: Earth Retaining

Search Result 458, Processing Time 0.029 seconds

A Basic Study for Design and Analysis of the Green Wall System (Green Wall 시스템의 설계 및 해석을 위한 기초연구)

  • Park, Si-Sam;Kim, Jong-Min;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.681-688
    • /
    • 2005
  • The Green Wall is the highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. Hence, the purpose of this study was to provide the design and analysis technique of the segmental retaining wall reinforced by soil nailing. Also, in this study, various parametric studies using numerical method as shear strength reduction (SSR) technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF

Weighting Value Evaluation of Condition Assessment Item in Reinforced Earth Retaining Walls by Applying Hybrid Weighting Technique (혼합 가중치를 적용한 보강토 옹벽의 상태평가항목 가중치 평가)

  • Lee, Hyung Do;Won, Jeong-Hun;Seong, Joohyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.83-93
    • /
    • 2017
  • This study proposed the new weighting values and fault points of condition assessment items for reinforced earth retaining walls based on the combination the inspection data and hybrid weighting technique. Utilizing the inspection data of 161 reinforced earth retaining walls, multi regression analysis and entropy technique were applied to gain the weighting values of condition assessment items. In addition, the weighting values by AHP technique was analyzed based on the opinion of experts. By appling hybrid weighting technique to the calculated weighting values obtained by the individual technique, the new weighting values of condition assessment items were proposed, and the fault points and fault indices of reinforced earth retaining walls were proposed. Results showed that the rank of the weighting value of the condition evaluation items was fluctuated according to the multiple regression analysis, AHP technique, and entropy technique. There was no duplication of the rank of the weighting value while the current weighting value was overlapped. Specially, in the rsults of multi regression analysis, two condition assessment items were occupied 70% of the total weights. When the proposed weighting values were applied to existing reinforced earth retaining wall of 161, 16 reinforced earth retaining walls showed the increased risk rank and 31 represented the decreased risk rank.

Earth Retaining Structure Using a Row of piles during Shallow Excavation in Soft Clay (연약점성토지반의 얕은 굴착시 줄말뚝을 이용한 흙막이공)

  • 홍원표;윤종민;송영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.191-201
    • /
    • 2000
  • In this study, the earth retaining structure using a row of piles considering plastic flow of the ground is suggested for shallow excavation works instead of conventional anchored sheet-pile wall method in the marine clays with high groundwater level. The behavior of the earth retaining structure using a row of piles is precisely observed during excavation by inclinometer and piezometer installed in opposite to the excavation side. As a result of field measurement, it was found that the behaviors of the piles and the soil were influenced mainly by slope of excavation face, interval ratio of piles, fixity condition of pile head, and stability number, etc. The earth retaining structure using a row of piles is ascertained for workability, stability, and economical construction on the soft ground having no adjacent structures.

  • PDF

Model Test of Reinforced Earth Retaining Walls (보강토옹벽에 대한 모형실험)

  • 진병익;유연길
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • An experimental study was carried out in the laboratory on a model of a reinforced earth retaining wall to provide the empirical data for the rational design and the construction methods on a reinforced earth retaining wall. Observed measurements included the variation of tension in the aluminium foil reinforcing strips was monitored by electrical resistance strain gauges pasted on its at different stages of construction. In addition, the lateral movement of the wall was measured by dial gauges and the mode of collapse of the wall was investigated. The measured values are discussed in comparison with the results of the existing studies of the reinforced earth retaining wall. A significant result of the experiments is that the variation of tension in reinforcing strips is non-linear with the maximum tension occuring close to wall face. Attachment of reinforcement to wall increases the stability against overturning.

  • PDF

Consideration of Failure Type on the Ground Excavation (지하굴착에 따른 붕괴유형에 대한 고찰)

  • Lee, Jung-Jae;Jung, Kyung-Sik;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF

A Study on Reinforcement Method of Reinforced Soil Retaining Wall Through Field Experiment (보강토옹벽의 배부름현상 분석 및 보강 방법에 대한 실험적 연구)

  • Lee, Won-Hong;Mun, Byeong-Jo;Lee, Seuong-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.103-112
    • /
    • 2019
  • This study proposes a system to control the bulging phenomenon occurring in the reinforced earth retaining wall and to evaluate the reliability of the system by field experiment. In this study, drainage facilities were not installed in order to induce reinforcement earth retaining wall bulging, and the bulging was induced by rainfall. The induced bulging displacement exceeded the horizontal displacement criterion during the construction of FHWA. The retaining wall block was drilled and grouting was performed by inserting the nail into the drilling hole. The wire mesh is installed on the reinforcing surface and the head of the nail is connected horizontally so that the blocks of the reinforcing earth retaining wall can be supported with each other. In order to protect the reinforcements, the reinforcement surface was closed with shotcrete and a measuring device was installed to detect the progress of the displacement. After the reinforcement, the bulging were not found to progress any more, confirming the reliability of the system.

Case Study on Application of PHC Pile to Earth Retaining and Retention Wall (옹벽겸용 흙막이벽으로 PHC말뚝의 적용 사례 연구)

  • Han, Jung-Geun;Hong, Ki-Kwon;Eo, Yun-Won;Kim, Sang-Kwi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2006
  • The construction of earth retaining wall and structure which get environmental element have to appling at the same time, then construction period and construction cost increase. These system which is presented to overcomes shortcoming and have function of earth retaining wall and retention wall at the same time. However, because existing method has limit excavation depth, the advanced design pattern more than existing method, rows of pile was applied. The workability and stability of applied design method are evaluated through analyze of construction case. The results confirmed that application design method can solve displacement of pile and limit excavation depth in existing earth retaining wall.

  • PDF

An Experimental Study on the Inclined Earth Retaining Structure in Clay (점토지반내의 IER 지주식 흙막이의 실험적 고찰)

  • Jeong, Dong-Uk;Im, Jong-Chul;Yoo, Jae-Won;Seo, Min-Su;Koo, Young-Mo;Kim, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.63-75
    • /
    • 2013
  • Inclined Earth Retaining Structure Method (IER Method), was developed in order to improve the mechanical properties of the existing earth retaining method. IER consists of two supports, which are front and back supports. In the IER method, back support is very effective for the reduction of the earth pressure acting on the front support. In this study, the effects of back support and fixing conditions of lower ends of supports are analysed by laboratory model tests in clay. The test results show that back support reduces the Leteral displacement of IER effectively, and according to the results the effect of interval and fixing condition of back support was analysed.

A Study on the Application of Lateral Earth Pressure to Earth Retaining Wall Considering Ground Characteristics in Jeju I - Case of Strut Construction - (제주 지역의 지반 특성을 고려한 흙막이벽의 측방토압 적용에 관한 연구 I -스트럿 공법 시공 사례)

  • Do-Hyeong Kim;Dong-Wook Lee;Hee-Bok Choi;Kwon-Moon Ko
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • This paper describes the comparative results of measured and predicted values for the horizontal displacement of earth retaining wall based on two field cases, In order to examine the application of lateral earth pressure to the earth retaining wall considering the typical ground characteristics (clinker layer) in Jeju. The prediction of the lateral earth pressure causing the horizontal displacement of the retaining wall was performed by elasto-plastic analysis using Rankine earth pressure, Terzaghi & Peck modified lateral earth pressure, and Tschebotarioff lateral earth pressure. As a result, it was confirmed that the maximum horizontal displacement predicted at site A was about 5 times larger than the measured value, and the ground with maximum horizontal displacement occurred by the prediction was found to be the clinker layer. In the case of site B, the predicted value was 4 to 7 times larger than the measured value. In addition, the ground with maximum horizontal displacement and the tendency of horizontal displacement were very different depending on the prediction method. This means that research on lateral earth pressure that can consider regional characteristics needs to be continued, because it is due to the multi-layered ground characteristics of the Jeju area in which bedrock layers and clinker layers are alternately distributed,

Displacement and Earth Pressure Distribution of the Reinforced Soil Segmental Retaining Walls under the Simulated Cyclic Train Loading (모사열차 반복하중 재하에 따른 블록식 보강토 옹벽의 변위 및 토압 분포)

  • 이진욱;고태훈;이성혁;심재훈
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.620-625
    • /
    • 2002
  • In this study, the simulated cyclic train loading test was carried out in order to investigate the dynamic behavior in/at the block type reinforced earth retaining wall. The results in this test were compared with unreinforced and reinforced case, respectively. It was shown that we confirmed the correlation between earth pressure and displacement, the confining effect of wall displacement by the effect of geogrid.

  • PDF