• Title/Summary/Keyword: Earth Pressure

Search Result 1,239, Processing Time 0.025 seconds

New techniques for estimating the shut-in pressure in hydro-fracturing pressure-time curves

  • Choi Sung O.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.272-280
    • /
    • 2003
  • A definite shut-in pressure in hydraulic fracturing techniques is needed for obtaining the correct information on the in-situ stress regimes in rock masses. The relation between the behaviour of hydraulically induced fractures and the condition of remote stress is considered to be major reasons of an ambiguous shut-in pressure in hydraulic fracturing pressure-time history curves. This paper describes the results of a series of numerical analyses carried out using UDEC(Universal Distinct Element Code, Itasca), which is based on the discrete element method, to compare several methods for determining the shut-in pressure during hydraulic fracturing. The fully coupling of hydraulic and mechanical analysis was applied, and the effects of four different discontinuity geometries in numerical modelling have been investigated for this purpose. The effects of different remote stress regimes and different physical properties on hydraulic fracture propagation have been also analyzed. Several methods for obtaining shut-in pressure from the ambiguous shut-in curves have been applied to all the numerical models. The graphical intersection methods, such as (P vs. t) method, (P vs. log(t)) method, (log(P) vs. log(t)) method, give smaller values of the shut-in pressure than the statistical method, (dP/dt vs. P). Care should be taken in selecting a method for shut-in pressure, because there can be existed a stress anomaly around the wellbore and fracturing from the wellbore by a constant flow rate may have a more complicate mechanism.

  • PDF

A Study on the Self-contained Earth Retaining Wall Method Using Bracing (브레이싱을 이용한 자립식 흙막이 공법에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • In a construction site, excavation work has a close relation with temporary earth retaining structure. In order to build the underground structure most effectively in a narrow space, prevent soil relaxation of the external behind ground in excavation work, and maintain a ground water level, it is required to install a temporary earth retaining structure that secures safety. To prevent soil washoff in underground excavation work, the conventional method of temporary earth retaining structure is to make a temporary wall and build the internal support with the use of earth anchor, raker, and struct for excavation work. RSB method that improves the problem of the conventional method is to remove the internal support, make use of two-row soldier piles and bracing, and thereby to resist earth pressure independently for underground excavation. This study revealed that through the field application cases of RSB method and the measurement result, the applicability of the method for installing a temporary earth retaining structure, the assessment result, and displacement all met allowable values of measurement, and that the RSB method, compared to the conventional method, improved constructability and economy.

Finite Element Analysis of Earth Retention System with Prestressed Wales (프리스트레스트 띠장을 적용한 흙막이 시스템의 유한요소해석)

  • Park, Jong-Sik;Kim, Sung-Kyu;Joo, Yong-Sun;Kim, Nak-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.25-34
    • /
    • 2008
  • A finite element analysis was performed for new earth retention system with prestressed wales. A 3D finite element model was adopted in this study to investigate the behavior of the earth retention system with prestressed wales. A procedure of the 3D finite element modeling of this earth retention system was presented. The procedure included the modeling of soil, wall, strut, and members of prestressed wale system which consists of wale, support leg, and steel wires, and the interface modeling of soil-wall and wall-wale. The numerical predictions of lateral wall deflection, and axial load on the members of prestressed wale systems and struts were evaluated in comparison with the measurements obtained from field instruments. A sensitivity analysis was performed using the proposed 3D finite element model to investigate the behavior of new earth retention system on a wide range of prestress load conditions of steel wires. The lateral deflection of the wall and wale, the bending moment of the wale, and the lateral earth pressure distribution on the wall were computed. Implications of the results from this study were discussed.

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

The Consolidation Characteristics of Soft Clay by Stepped Vacuum Pressure in Individual Vacuum Method (개별진공압밀공법이 적용된 점성토의 단계진공압에 따른 압밀특성)

  • Han, Sang-Jae;Kim, Jong-Seok;Kim, Byung-Il;Kim, Do-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.41-52
    • /
    • 2012
  • Suction drain method can directly apply vacuum pressure to the soft ground through vertical drains so it can make hardening zones around them. These hardening zones make steeply lower the discharge efficiency of the pore water with decreasing permeability. This paper considered a stepped vacuum pressure to minimize a hardening zone which is one of the important parameters that can decrease discharge efficiency. A series of laboratory tests were conducted in order to examine the effect of the hardening zones and to evaluate their effects to the ground improvements with varying durations which applied stepped vacuum pressures(-20kPa, -40kPa, -60kPa and -80kPa) with Busan marine clay. According to strength(CPT), water content test and theoretical investigation indicate a size of the hardening zone within 7cm and the decreasing ratio of permeability about 2.0~4.0. Also, the total settlements are larger for the stepped vacuum pressure than the instant vacuum loading. The application time with vacuum pressure is determined considering the geotechnical properties of the interested clays. Results of numerical analysis show that consolidation behavior is appropriate to measurement for considering hardening zones.

Elastic Behavior of Zeolite Mesolite under Hydrostatic Pressure (제올라이트 메소라이트의 수압 하 탄성특성)

  • Lee, Yong-Jae;Lee, Yong-Moon;Seoung, Dong-Hoon;Jang, Young-Nam
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.509-512
    • /
    • 2009
  • Powder diffraction patterns of the zeolite mesolite ($Na_{5.33}Ca_{5.33}Al_{16}Si_{24}O_{80}{\cdot}21.33H_2O$), with a natrolite framework topology were measured as a function of pressure up to 5.0 GPa using a diamond-anvil cell and a $200{\mu}m$-focused monochromatic synchrotron X-ray. Under the hydrostatic conditions mediated by pore-penetrating alcohol and water mixture, the elastic behavior of mesolite is characterized by continuous volume expansion between ca. 0.5 and 1.5 GPa, which results from expansion in the ab-plane and contraction along the c-axis. Subsequent to this anomalous behavior, changes in the powder diffraction patterns suggest possible reentrant order-disorder transition. The ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis attribute to the $3b_{natrolite}$ cell below 1.5 GPa. When the volume expansion is completed above 1.5 GPa, such characteristic ordering reflections disappear and the $b_{natrolite}$ cell persists with marginal volume contraction up to ca. 2.5 GPa. Further increase in pressure leads to progressive volume contraction and appears to generate another set of superlattice reflections in the $3c_{natrolite}$ cell. This suggests that mesolite in the pressure-induced hydration state experiences order-disorder-order transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels.

Effect of Bedding Conditions on Earth Pressure Distribution of Embedded Pipes (EPS베딩재가 지중매설관의 토압에 미치는 영향)

  • Yoo, Nam-Jae;Lee, Hee-Kwang;Park, Byung-Soo;Jeong, Gil-Soo;Sim, Do-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.121-130
    • /
    • 2007
  • In this paper, large scale experimental model tests were performed to investigate the distribution of earth pressure acting on embedded rigid pipes having different bedding conditions. For these tests, very light weighted EPS blocks were installed at top and bottom of the rigid pipe and Jumunjin Standard Sand was used as a ground material. As results of model tests, for the case of no bedding on the pipe, the measured pressure at the bottom of the pipe was $4.96_{tf/m^2}$ whereas they were in the range of $1.87{\sim}4.96_{tf/m^2}$ in the case of EPS beddings being installed at the top and the bottom of the pipe. Therefore, for the case of EPS bedding being installed, the ratio of reduced pressures acting on the pipe, compared with the case of no EPS beddings, were in the rage of 16~62%. As a result of parametric test with changing the locations of EPS bedding, the trend of reducing the stress acting on the pipe was in the order of bottom bedding, top bedding, and top and bottom bedding. Effect of bedding positions on the reduced magnitude of acting pressure on the pipe was more significant in the case of top bedding than in the case of the bottom bedding.

Transient Flow Behavior of Propellant with Actuation of Thrust Control Valve in Satellite Propulsion System (위성 추진시스템의 추력제어밸브 작동에 따른 추진제 비정상 유동 특성)

  • Kim, Jeong-Soo;Han, Cho-Young;Choi, Jin-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.294-298
    • /
    • 2001
  • Satellite propulsion system is employed for orbit transfer, orbit correction, and attitude control. The monopropellant feeding system in the low-earth-orbit satellite blowdowns fuel to the thrust chamber. The thrust produced by the thruster depends on fuel amount flowed into the combustion chamber. If the thruster valve be given on-off signal from on-board commander in the satellite, valve will be opened or closed. When the thrusters fire fuel flows through opened thruster valve. Instantaneous stoppage of flow in according to valve actuation produces transient pressure due to pressure wave. This paper describes transient pressure predictions of the KOMPSAT2 propulsion system resulting from latching valve and thrust control valve operations. The time-dependent set of the fluid mass and momentum equations are calculated by Method of Characteristics (MOC).

  • PDF

Field Test of Recycled Aggregates and Crushed Stone as Horizontal Drains (수평배수재용 순환골재와 쇄석의 현장시험)

  • Kim, Si-Jung;Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In this study, field test on utilization of recycled aggregates and crushed stone as horizontal drains to use an alternative material of sand in soft ground is practiced. The settlement with time showed similarly ranged from 28.4-30.3 cm in the all horizontal materials. The excess pore water pressure of the recycled aggregates and crushed stone showed smaller than sand. The small the excess pore water pressure becomes faster the consolidation period and it can reduces the amount of residual settlement. Therefore, it was verified as having enough to an alternative materials that the field applicability is excellent. The distribution of earth pressure with time showed similarly in the all horizontal materials. The recycled aggregates and crushed stone was very applicable to practice because there is no mat resistance in the horizontal drains layer. The penetration rate in the SCP and PVD improvement sections did not show large differences as the grain size and the horizontal drainage height increases.

Pressure Vessel Design and Structural Analysis of Unmanned Underwater Vehicle (심해용 무인잠수정의 내압용기 구조설계)

  • Joung, Tae-hwan;Lee, Jae-hwan;Nho, In-Sik;Lee, Pan-mook;Aoki Taro
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.140-146
    • /
    • 2004
  • This paper presents the structural analysis of the pressure vessels in the unmanned underwater vehicle (UUV) under developing at KORDi, which consists of a ROV, an AUV and a launcher at 6000 m depth in the ocean. Analytical, linear and nonlinear stress and buckling analysis of cylindrical pressure vessels using FEM (ANSYS) are performed to verify the safety of the current design.