• Title/Summary/Keyword: Earth Observation Information

Search Result 215, Processing Time 0.031 seconds

Sub-surface imaging and vector precision from high resolution down-hole TEM logging

  • Chull, James;Massie, Duncan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.11-18
    • /
    • 2005
  • Filament inversion routines are highly effective for target definition whenever total-field DHTEM vectors can be obtained using three-component logging tools. However most cross-hole components contain significant noise related to sensor design and errors in observation of probe rotation. Standard stacking methods can be used to improve data quality but additional statistical methods based on cross-correlation and spatial averaging of orthogonal components may be required to ensure a consistent vector migration path. Apart from assisting with spatial averaging, multiple filaments generated for successive time-windows can provide additional imaging information relating to target geometry and current migration. New digital receiver systems provide additional time-windows to provide better tracking options necessary for high-resolution imaging of this type.

  • PDF

KOMPSAT European Cooperation

  • Schiller C.;Triebnig G.;Kim Y.;Ahn S.;Moll B.;Kamp A. van der;Maass H.;Schwarz J.;Kressler F.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.154-157
    • /
    • 2004
  • The KOMPSAT European Cooperation aims at enhancing existing and establishing new collaborations between KARI and various European institutions. The objective is to create mutual data and information exchange possibilities and to develop new data applications of available and future space based Earth Observation sensors. In this paper, the concept of a KOMPSAT regional application center, a joint development between KARI, ARCS and other European partners is presented. This includes the establishment of an additional KOMPSAT-2 downlink in Europe, and the developments of a state-of-the-art user service system for urban and environmental security monitoring.

  • PDF

KOMPSAT-2 AOCS Control Mode & Power Safe Mode Design

  • Rhee, Seung-Wu;Kim, Hak-Jung;Lee, Joo-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.77-88
    • /
    • 2005
  • KOMPSAT-2 is the second Korean earth observation satellite after KOMPSAT-l: the 1 meter GSD cartographic capability and planning to launch at the end of 2005 by ROKOT launch vehicle. The dedicated AOCS operational modes are designed for KOMPSAT-2 based on KOMPSAT-l experience All of AOCS operational modes requires gyro information. To compensate this drawback, Power Safe Mode is designed and implemented. Successfully AOCS on-board software is developed and extensively verified through a nonlinear simulation process. The simulation results of Power Safe Mode and Science Fine Submode are provided to demonstrate its functionality as well as its performance.

Decadal Observation and Studies in the Amundsen Sea, Antarctica: Insights from Radiocarbon Values (10여년간의 서남극 아문젠해 관측과 연구: 방사성탄소동위원소 값을 중심으로)

  • Kim, Minkyoung
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.83-97
    • /
    • 2022
  • The Amundsen Sea in West Antarctica is one of the most affected regions by climate change, but it is one of the least studied realms due to difficulties in access. Korea Polar Research Institute (KOPRI) launched a research project in the Amundsen Sea in 2010 using the icebreaker research vessel (IBRV) Araon and has been conducting various research initiatives. In this paper, previous researches derived from the Amundsen Sea Embayment by Korean researchers are introduced. Through previous studies, researchers have been able to interpret the environmental and biogeochemical changes according to the inflow Circumpolar Deep Water (CDW) and provide information for climate models. In particular, researches using radiocarbon isotopes (14C) were introduced to understand the physical and biogeochemical mechanisms of the carbon cycle in the Amundsen Sea. Opportunely, with the construction of a second icebreaker research vessel, the direction for systematic and long-term polar data acquisition can be presented.

Utilization of Satellite Technologies for Agriculture

  • Ju-Kyung Yu;Jinhyun Ahn;Gyung Deok Han;Ho-Min Kang;Hyun Jo;Yong Suk Chung
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.547-552
    • /
    • 2024
  • Satellite technology has emerged as a powerful tool in modern agriculture, offering capabilities for Earth observation, land-use pattern analysis, crop productivity assessment, and natural disaster prevention. This mini-review provides a concise overview of the applications and benefits of satellite technologies in agriculture. It discusses how satellite imagery enables the monitoring of crop health, identification of land-use patterns, evaluation of crop productivity, and mitigation of natural disasters. Farmers and policymakers can make informed decisions to optimize agricultural practices, enhance food security, and promote sustainable agriculture by leveraging satellite data. Integrating satellite technology with other advancements, such as artificial intelligence and precision farming techniques, holds promise for further revolutionizing the agricultural sector. Overall, satellite technology has immense potential for improving agricultural efficiency, resilience, and sustainability in the face of evolving environmental challenges.

Utilization of Database in 3D Visualization of Remotely Sensed Data (원격탐사 영상의 3D 시각화와 데이터베이스의 활용)

  • Jung, Myung-Hee;Yun, Eui-Jung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.40-46
    • /
    • 2008
  • 3D visualization of geological environments using remotely sensed data and the various sources of data provides new methodology to interpret geological observation data and analyze geo-information in earth science applications. It enables to understand spatio-temporal relationships and causal processes in the three-dimension, which would be difficult to identify without 3D representation. To build more realistic geological environments, which are useful to recognize spatial characteristics and relationships of geological objects, 3D modeling, topological analysis, and database should be coupled and taken into consideration for an integrated configuration of the system. In this study, a method for 3D visualization, extraction of geological data, storage and data management using remotely sensed data is proposed with the goal of providing a methodology to utilize dynamic spatio-temporal modeling and simulation in the three-dimension for geoscience and earth science applications.

Time-critical Disaster Response by Cooperating with International Charter (국제재난기구 협업을 통한 적시적 재난대응)

  • Kim, Seong-Sam;Goo, Sin-Hoi;Park, Young-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.109-117
    • /
    • 2012
  • Recently, large-scale multi-hazards have been occurred in the various areas of the world. A variety of Earth observation sensors such as satellite EO, aerial and terrestrial LiDAR have been utilized for global natural disaster monitoring. Especially, commercial satellites which observe the Earth regularly and repeatedly, and acquire images with cm-level high spatial resolution enable its applications to extend in the fields of disaster management from advanced disaster monitoring to timely recovery. However, due to existing satellite operation systems with some limitations in almost real-time and wide regional disaster response, close international collaborations between satellite operating organizations like NASA, JAXA, KARI etc. have been required for collecting satellite images in time through a satellite platform with multi-sensors or satellite constellation. For responding domestic natural disaster such as heavy snowfall and extreme rainfall in 2011, this paper proposes a disaster management system for timely decision-making; rapid acquisition of satellite imagery, data processing, GIS analysis, and digital mapping through cooperation with NDMI in Korea and International Charter-Space and Major disasters.

Development of Precise Point Positioning Solution for Detection of Earthquake and Crustal Movement (지진 및 지각변동 감지를 위한 정밀절대측위 솔루션 개발)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4587-4592
    • /
    • 2013
  • GPS is recognized the essential method to obtain the best result in the sphere of earth science that is setting of International Reference Frame, decision of the rotation coefficient about the earth rotation axis, detection of the crustal deformation, and observation of the diastrophism by high precision positioning except for navigation, geodetic survey and mapping. Therefore, in this study, it was attempted to build an expert service that enables non-experts to use high-precision GPS data processing. As a result, an Precise Point Positioning Solution that can maximize user convenience simply by entering the minimum required information for GPS data processing was developed, and the result of Precise Point Positioning Solution using GPS data provided by National Geographic Information Institute was compared with result of ITRF.

Technology Tree and Domestic Research Status of Satellite Remote-Sensing of the Earth (위성자료를 응용한 지구관측 분야의 기술분류와 국내 연구동향 파악)

  • 김승범;김문규;안명환;김계현;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.253-273
    • /
    • 2001
  • In this review article, we produce a technology tree in the earth observation by remote sensing, which is the Level I technology in the tree. To define Level II technologies, we create a two-dimensional matrix of technologies viewed from methodology and application viewpoints. Consequently the following fields are selected: reception-archiving, atmosphere, ocean, land, GIS, and common technology. For each Level II technology, we extract half a dozen Level III and about 20-30 Level IV technologies. For each Level IV technology, we review the status of domestic research and the approaches for acquiring deficient technology in Korea. Also we survey foreign institutions specializing in the deficient technologies and the time when the deficient technologies are needed. Furthermore we assign priority technologies from the viewpoints of public need and economic benefits. The information given in this article would help understand and collaborate among different disciplines, be a useful guide to a beginner to remote sensing, and assist policy making.

Analysis of BRD Components Over Major Land Types of Korea

  • Kim, Sang-Il;Han, Kyung-Soo;Park, Soo-Jea;Pi, Kyoung-Jin;Kim, In-Hwan;Lee, Min-Ji;Lee, Sun-Gu;Chun, Young-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.653-664
    • /
    • 2010
  • The land surface reflectance is a key parameter influencing the climate near the surface. Therefore, it must be determined with sufficient accuracy for climate change research. In particular, the characteristics of the bidirectional reflectance distribution function (BRDF) when using earth observation system (EOS) are important for normalizing the reflected solar radiation from the earth's surface. Also, wide swath satellites like SPOT/VGT (VEGETATION) permit sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning. This gives a difficulty to BRDF model based reflectance normalization of high resolution satellites. The principal objective of the study is to add BRDF modeling of high resolution satellites and to supply insufficient angular sampling through identifying BRDF components from SPOT/VGT. This study is performed as the preliminary data for apply to high-resolution satellite. The study provides surface parameters by eliminating BRD effect when calculated biophysical index of plant by BRDF model. We use semi-empirical BRDF model to identify the BRD components. This study uses SPOT/VGT satellite data acquired in the S1 (daily) data. Modeled reflectance values show a good agreement with measured reflectance values from SPOT satellite. This study analyzes BRD effect components by using the NDVI(Normalized Difference Vegetation Index) and the angle components such as solar zenith angle, satellite zenith angle and relative azimuth angle. Geometric scattering kernel mainly depends on the azimuth angle variation and volumetric scattering kernel is less dependent on the azimuth angle variation. Also, forest from land cover shows the wider distribution of value than cropland, overall tendency is similar. Forest shows relatively larger value of geometric term ($K_1{\cdot}f_1$) than cropland, When performed comparison between cropland and forest. Angle and NDVI value are closely related.