DOI QR코드

DOI QR Code

Decadal Observation and Studies in the Amundsen Sea, Antarctica: Insights from Radiocarbon Values

10여년간의 서남극 아문젠해 관측과 연구: 방사성탄소동위원소 값을 중심으로

  • Kim, Minkyoung (School of Earth System Sciences, College of Natural Sciences, Kyungpook National University)
  • 김민경 (경북대학교 자연과학대학 지구시스템과학부)
  • Received : 2022.01.21
  • Accepted : 2022.03.02
  • Published : 2022.03.30

Abstract

The Amundsen Sea in West Antarctica is one of the most affected regions by climate change, but it is one of the least studied realms due to difficulties in access. Korea Polar Research Institute (KOPRI) launched a research project in the Amundsen Sea in 2010 using the icebreaker research vessel (IBRV) Araon and has been conducting various research initiatives. In this paper, previous researches derived from the Amundsen Sea Embayment by Korean researchers are introduced. Through previous studies, researchers have been able to interpret the environmental and biogeochemical changes according to the inflow Circumpolar Deep Water (CDW) and provide information for climate models. In particular, researches using radiocarbon isotopes (14C) were introduced to understand the physical and biogeochemical mechanisms of the carbon cycle in the Amundsen Sea. Opportunely, with the construction of a second icebreaker research vessel, the direction for systematic and long-term polar data acquisition can be presented.

Keywords

Acknowledgement

이 논문은 2021학년도 경북대학교 신임교수정착연구비에 의하여 연구되었습니다.

References

  1. Adusumilli S, Fricker HA, Medley B, Padman L, Siegfried MR (2020) Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat Geosci 13(9):616-620. doi:10.1038/ s41561-020-0616-z
  2. Archibald KM, David AS, Scott CD (2019) Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Global Biogeochem Cy 33(2):181-199. doi:10.1029/ 2018GB005983
  3. Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, Vanwoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365-367 https://doi.org/10.1126/science.283.5400.365
  4. Arrigo KR, van Dijken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res 108(C8):3271. doi:0.1029/2002JC001739 https://doi.org/10.1029/2002JC001739
  5. Arrigo, KR, Lowry KE and van Dijken GL (2012) Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep Sea Res PT I 71:5-15
  6. Bercovici SK, Hansell DA (2016) Dissolved organic carbon in the deep Southern Ocean: local versus distant controls. Global Biogeochem Cy 30:350-360 https://doi.org/10.1002/2015GB005252
  7. Bercovici SK, McNichol AP, Xu L, Hansell DA (2018) Radiocarbon content of dissolved organic carbon in the South Indian Ocean. Geophys Res Lett 45:872-879 https://doi.org/10.1002/2017gl076295
  8. Berner RA (1990) Atmospheric carbon dioxide levels over phanerozoic time. Science 249:1382-1386 https://doi.org/10.1126/science.249.4975.1382
  9. Bricher P, the SOOS Data Management Sub-Committee (2022) Southern Ocean Mooring Network, https://www.soosmap.aq Accessed 12 Jan 2022
  10. Carlson CA, Ducklow HW, Hansell DA, Smith WO Jr (1998) Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnology Oceanography 43(3):375-386 https://doi.org/10.4319/lo.1998.43.3.0375
  11. Carlson CA, Hansell DA, Peltzer ET, Smith WO Jr (2000) Stocks and dynamics of dissolved and particulate organic matter in the southern Ross Sea, Antarctica. Deep-Sea Res Pt II 47:3201-3225. doi:10.1016/S0967-0645(00)00065-5
  12. Caron DA, Dennett MR, Lonsdale DJ, Moran DM, Shalapyonok L (2000) Microzooplankton herbivory in the Ross Sea, Antarctica. Deep-Sea Res Pt II 47:3249-3272 https://doi.org/10.1016/S0967-0645(00)00067-9
  13. Chen M, Jung J, Lee YK, Kim TW, Hur J (2019) Production of tyrosine-like fluorescence and labile chromophoric dissolved organic matter (DOM) and low surface accumulation of low molecular weight-dominated DOM in a productive Antarctic sea. Mar Chem 213:40-48 https://doi.org/10.1016/j.marchem.2019.04.009
  14. Cho H, Hwang CY, Kim JG, Kang S, Knittel K, Choi A, Kim SH, Rhee SK, Yang EJ, Lee S, Hyun JH (2020) A unique benthic microbial community underlying the Phaeocystis antarctica-dominated Amundsen Sea polynya, Antarctica: a proxy for assessing the impact of global changes. Front Mar Sci 6:797. doi:10.3389/fmars.2019.00797
  15. Dotto TS, Naveira Garabato AC, Bacon S, Holland PR, Kimura S, Firing YL, Tsamados M, Wahlin, AK, Jenkins A (2019) Wind-driven processes controlling oceanic heat delivery to the Amundsen Sea, Antarctica. J Phys Oceanogr 49(11):2829-2849. doi:10.1175/JPO-D-19-0064.1
  16. Dotto TS, Naveira Garabato AC, Wahlin AK, Bacon S, Holland PR, Kimura S, Tsamados M, Herraiz-Borreguero L, Kalen O, Jenkins A (2020) Control of the oceanic heat content of the Getz-Dotson Trough, Antarctica, by the Amundsen Sea Low. J Geophys Res 125(8):e2020JC016113
  17. Druffel ER, Bauer JE (2000) Radiocarbon distributions in Southern Ocean dissolved and particulate organic matter. Geophys Res Lett 27:1495-1498 https://doi.org/10.1029/1999GL002398
  18. Druffel ERM, Williams PM (1990) Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature 347:172-174 https://doi.org/10.1038/347172a0
  19. Ducklow HW, Erickson M, Kelly J, Montes-Hugo M, Ribic CA, Smith RC, Stammerjohn SE, Karl DM (2008) Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: a long-term record, 1992-2006. Deep-Sea Res Pt II 55:2118-2131 https://doi.org/10.1016/j.dsr2.2008.04.028
  20. Ducklow HW, Erickson M, Lee S, Lowry K, Post A, Sherrell R, Stammerjohn S, Wilson S, Yager P (2015) Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula. Elementa 3:000046. doi:10.12952/journal.elementa.000046
  21. Eglinton TI, Eglinton G, Dupont L, Sholkovitz ER, Montlucon D, Reddy CM (2002) Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem Geophys Geosyst 3. doi:10.1029/2001GC000269
  22. Fang, L. Lee S, Lee SA, Hahm D, Kim G, Druffel ER, Hwang J (2020) Removal of refractory dissolved organic carbon in the Amundsen Sea, Antarctica. Sci Rep 10(1):1-8 https://doi.org/10.1038/s41598-019-56847-4
  23. Fragoso GM, Smith WO Jr (2012) Influence of hydrography on phytoplankton distribution in the Amundsen and Ross seas, Antarctica. J Marine Syst 89:19-29 https://doi.org/10.1016/j.jmarsys.2011.07.008
  24. Gao M, Kim SJ, Yang J, Liu J, Jiang T, Su B, W ang Y, Huang J (2021) Historical fidelity and future change of Amundsen Sea Low under 1.5℃-4℃ global warming in CMIP6. Atmos Res 255:105533. doi:10.1016/j.atmosres.2021.105533
  25. Ha HK, Wahlin A, Kim T, Lee S, Lee J, Lee H, Hong C, Arneborg L, Bjork G, Kalen O (2014) Circulation and modification of warm deep water on the central Amundsen Shelf, J Phys Oceanogr 44(5):1493-1501 https://doi.org/10.1175/JPO-D-13-0240.1
  26. Hahm D, Rhee TS, Kim HC, Park J, Kim YN, Shin HC, Lee S (2014) Spatial and temporal variation of net community production and its regulating factors in the Amundsen Sea, Antarctica. J Geophys Res 119(5):2815-2826 https://doi.org/10.1002/2013jc009762
  27. Hillenbrand CD. Smith JA, Hodell DA, Greaves M, Poole CR, Kender S, Williams M, Andersen TJ, Jernas PE, Elderfield H (2017) West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature 547(7661):43-48 https://doi.org/10.1038/nature22995
  28. Holland PR, Bracegirdle TJ, Dutrieux P, Jenkins A, Steig EJ (2019) West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat Geosci 12(9):718-724. doi:10.1038/s41561-019-0420-9
  29. Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Progr Oceanogr 76:217-285 https://doi.org/10.1016/j.pocean.2007.11.003
  30. Hood ET. Battin J, Fellman J, O'neel S, Spencer RG (2015) Storage and release of organic carbon from glaciers and ice sheets, Nat Geosci 8(2):91-96 https://doi.org/10.1038/ngeo2331
  31. Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55(04):2059-2072 https://doi.org/10.2458/azu_js_rc.v55i2.16177
  32. Hwang J, Druffel ERM, Eglinton TI (2010) Widespread influence of resuspended sediments on oceanic particulate organic carbon: insights from radiocarbon contents in sinking particles. Global Biogeochem Cy 24:GB4016. doi:10.1029/2010GB003802
  33. Hyun JH, Kim SH, Yang EJ, Choi A, Lee SH (2016) Biomass, production, and control of heterotrophic bacterioplankton during a late phytoplankton bloom in the Amundsen Sea Polynya, Antarctica. Deep-Sea Res Pt II 102:102-112. doi:10.1016/j.dsr2.2015.10.001
  34. Jang D, Choi M, Park J, Park K, Hong J, Lee S, Jung J (2019) Manganese in Seawaters of the Amundsen Sea, Antarctic. Ocean Polar Res 41(2):63-77
  35. Jang E, Park KT, Yoon YJ, Kim K, Gim Y, Chung HY, Lee K, Choi J, Park J, Park SJ, Koo JH, Fernandez RP, Saiz-Lopez A (2022) First-year sea ice leads to an increase in dimethyl sulfide-induced particle formation in the Antarctic Peninsula. Sci Total Environ 803:150002 https://doi.org/10.1016/j.scitotenv.2021.150002
  36. Jenkins A, Shoosmith D, Dutrieux P, Jacobs S, Kim TW, Lee SH, Ha HK, Stammerjohn S (2018) West Antarctic ice sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat Geosci 11(10):733-738. doi:10.1038/s41561-018-0207-4
  37. Jenkins, A. Dutrieux P, Jacobs SS, McPhail SD, Perrett JR, Webb AT and White D (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat Geosci 3(7):468-472 https://doi.org/10.1038/ngeo890
  38. Jeon MH (2020) Tracing circumpolar deep water and understanding of dissolved organic carbon behavior in the Amundsen Sea using fluorescent properties of dissolved organic matter. Masters Thesis, Pukyung National University, pp 1-97
  39. Jeon MH, Jung J, Park MO, Aoki S, Kim TW , Kim SK (2021) Tracing circumpolar deep water and glacial meltwater using humic-like fluorescent dissolved organic matter in the Amundsen Sea, Antarctica. Mar Chem 235:104008 https://doi.org/10.1016/j.marchem.2021.104008
  40. Joiris CR (2018) Seabird hotspots on icebergs in the Amundsen Sea, Antarctica. Polar Biol 41:111-114. doi:10.1007/s00300-017-2174-4
  41. Jung J, Hong SB, Chen M, Hur J, Jiao L, Lee Y, Park K, Hahm D, Choi J, Yang EJ, Park J, Kim T, Lee S (2020) Characteristics of methanesulfonic acid, non-sea-salt sulfate and organic carbon aerosols over the Amundsen Sea, Antarctica. Atmos Chem Phys 20(9): 5405-5424 https://doi.org/10.5194/acp-20-5405-2020
  42. Kim B, Lee S, Kim M, Hahm D, Rhee TS, Hwang J (2018) An investigation of gas exchange and water circulation in the Amundsen Sea based on dissolved inorganic radiocarbon. Geophys Res Lett 45(22):12,368-312,375 https://doi.org/10.1029/2018gl079464
  43. Kim BK, Lee JH, Joo HT, Song HJ, Yang EJ, Lee S, Lee SH (2016a). Macromolecular compositions of phytoplankton in the Amundsen Sea, Antarctica. Deep-Sea Res Pt II 123:42-49 https://doi.org/10.1016/j.dsr2.2015.04.024
  44. Kim I, Hahm D, Park K, Lee Y, Choi JO, Zhang M, Chen L, Lee S (2017a) Characteristics of the horizontal and vertical distributions of dimethyl sulfide throughout the Amundsen Sea Polynya. Sci Total Environ 584:154-163 https://doi.org/10.1016/j.scitotenv.2017.01.165
  45. Kim I, Hahm D, Rhee TS, Kim TW, Kim CS, Lee S (2016b) The distribution of glacial meltwater in the Amundsen Sea, Antarctica, revealed by dissolved helium and neon. J Geophys Res 121(3):1654-1666 https://doi.org/10.1002/2015JC011211
  46. Kim I, Zhang M, Kim K, Park K (2021a) First high-frequency underway observation of DMS distribution in the Southern Ocean during Austral Autumn. Atmosphere 12(1):122. doi:10.3390/atmos12010122
  47. Kim JW, Kim DJ, Kim SH, Ha HK, Lee SH (2015a) Disintegration and acceleration of Thwaites Ice Shelf on the Amundsen Sea revealed from remote sensing measurements. Gisci Remote Sens 52(4):498-509 https://doi.org/10.1080/15481603.2015.1041766
  48. Kim M (2019) Present and past organic carbon cycling on the Amundsen Shelf, Antarctica: implications from radiocarbon and sterols. Ph.D. Thesis, Seoul National University, pp 1-161
  49. Kim M, Choi MS, Lee SH, Lee SH, Rhee TS, Hahm D (2014) Estimation of POC export fluxes using 234Th/238U disequilibria in the Amundsen Sea, Antarctica; preliminary result, the sea. J Kor Soc Oceanogr 19(2):109-124
  50. Kim M, Hwang J, Eglinton TI, Druffel ER (2020) Lateral particle supply as a key vector in the oceanic carbon cycle, Global Biogeochem Cy 34(9):e2020GB006544
  51. Kim M, Hwang J, Kim HJ, Kim D, Yang EJ, Ducklow HW, La Hyoung S, Lee SH, Park J, Lee S (2015b) Sinking particle flux in the sea ice zone of the Amundsen shelf, Antarctica. Deep-Sea Res Pt I 101:110-117 https://doi.org/10.1016/j.dsr.2015.04.002
  52. Kim M, Hwang J, Lee SH, Kim HJ, Kim D, Yang EJ, Lee S (2016c) Sedimentation of particulate organic carbon on the Amundsen Shelf, Antarctica. Deep-Sea Res Pt II 123:135-144 https://doi.org/10.1016/j.dsr2.2015.07.018
  53. Kim M, Im J, Han H, Kim J, Lee S, Shin M, Kim HC (2015c) Landfast sea ice monitoring using multisensor fusion in the Antarctic. Gisci Remote Sens 52(2):239-256 https://doi.org/10.1080/15481603.2015.1026050
  54. Kim M, Yang EJ, Kim D, Jeong JH, Kim HJ, Park J, Jung J, Ducklow HW, Lee S, Hwang J (2019a) Sinking particle flux and composition at three sites of different annual sea ice cover in the Amundsen Sea, Antarctica. J Marine Syst 192:42-50 https://doi.org/10.1016/j.jmarsys.2019.01.002
  55. Kim M, Yang EJ, Kim HJ, Kim D, Kim TW, La HS, Lee S, Hwang J (2019b) Collection of large benthic invertebrates in sediment traps in the Amundsen Sea, Antarctica Biogeosciences 16(13):2683-2691 https://doi.org/10.5194/bg-16-2683-2019
  56. Kim SH, Choi A, Yang EJ, Lee SH, Hyun JH (2016d) Low benthic respiration and nutrient flux at the highly productive Amundsen Sea Polynya, Antarctica. Deep-Sea Res Pt II 123:92-101. doi:10.1016/j.dsr2.2015.10.004
  57. Kim SJ, Kim JG, Lee SH, Park SJ, Gwak JH, Jung MY, Chung WH, Yang EJ, Park J, Jung J, Hahn Y, Cho JC, Madsen EL, Rodriguez-Valera F, Hyun JH, Rhee SK (2019c) Genomic and metatranscriptomic analyses of carbon remineralization in an Antarctic polynya. Microbiome 7:29. doi:10.1186/s40168-019-0643-4
  58. Kim SY, Lim D, Rebolledo L, Park T, Esper O, Munoz P, La HS, Kim TW, Lee S (2021b) A 350-year multiproxy record of climate-driven environmental shifts in the Amundsen Sea Polynya, Antarctica. Global Planet Change 205:103589 https://doi.org/10.1016/j.gloplacha.2021.103589
  59. Kim TW, Ha HK, Wahlin AK, Lee SH, Kim CS, Lee JH Cho YK (2017b) Is Ekman pumping responsible for the seasonal variation of warm circumpolar deep water in the Amundsen Sea? Cont Shelf Res 132:38-48. doi:10.1016/j.csr.2016.09.005
  60. Kim TW, Yang HW, Dutrieux P, Wahlin AK, Jenkins A, Kim YG, Ha HK, Kim CS, Cho KH, Park T, Park J, Lee S, Cho YK (2021c) Interannual variation of modified circumpolar deep water in the Dotson-Getz Trough, West Antarctica. J Geophys Res 126:e2021JC017491. doi:10.1029/2021JC017491
  61. Ko AR, Yang EJ, Kim MS, Ju SJ (2016) Trophodynamics of euphausiids in the Amundsen Sea during the austral summer by fatty acid and stable isotopic signatures. Deep-Sea Res Pt II 123:78-85 https://doi.org/10.1016/j.dsr2.2015.04.023
  62. Kwon YS, La HS, Jung J, Lee SH, Kim TW, Kang HW, Lee S (2021) Exploring the roles of iron and irradiance in dynamics of diatoms and Phaeocystis in the Amundsen Sea continental shelf water. J Geophys Res 126:e2020JC016673. doi:10.1029/2020JC016673
  63. La HS, Ha HK, Kang CY, W ahlin AK, Shin HC (2015) Acoustic backscatter observations with implications for seasonal and vertical migrations of zooplankton and nekton in the Amundsen shelf (Antarctica). Estuar Coast Shelf Sci 152:124-133. doi:10.1016/j.ecss.2014.11.020
  64. La HS, Park K (2016) The evident role of clouds on phytoplankton abundance in Antarctic Coastal Polynyas. Terr Atmos Ocean Sci 27:293-301 https://doi.org/10.3319/TAO.2015.11.30.01(Oc)
  65. La HS, Park K, W ahlin A, Arrigo KR, Kim DS, Yang EJ, Atkinson A, Fielding S, Im J, Kim TW , Shin HC, Lee SH, Ha HK (2019) Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica. Sci Rep 9:10087. doi:10.1038/s41598-019-46423-1
  66. Lamping N, Muller J, Esper O, Hillenbrand CD, Smith JA, Kuhn G (2020) Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica. Quat Sci Rev 228:106103 https://doi.org/10.1016/j.quascirev.2019.106103
  67. Lee SH, Hwang J, Ducklow HW, Hahm D, Lee SH, Kim D, Hyun JH, Park J, Ha HK, Kim TW (2017a) Evidence of minimal carbon sequestration in the productive Amundsen Sea polynya, Geophys Res Lett 44(15):7892-7899 https://doi.org/10.1002/2017GL074646
  68. Lee SH, Kim BK, Lim YJ, Joo H, Kang JJ, Lee D, Park J, Ha SY, Lee SH (2017b) Small phytoplankton contribution to the standing stocks and the total primary production in the Amundsen Sea. Biogeosciences 14(15):3705-3713 https://doi.org/10.5194/bg-14-3705-2017
  69. Lee SH, Kim BK, Yun MS, Joo H, Yang EJ, Kim YN, Shin HC, Lee S (2012) Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica. Polar Biol 35(11):1721-1733 https://doi.org/10.1007/s00300-012-1220-5
  70. Lee SH, Yun MS, Kim BK, Joo H, Kang SJ, Kang CK, Whitledge TE (2013) Contribution of small phytoplankton to total primary production in the Chukchi Sea. Cont Shelf Res 68:43-50 https://doi.org/10.1016/j.csr.2013.08.008
  71. Lee Y, Yang EJ, Park J, Jung J, Kim TW , Lee S (2016a) Physical-biological coupling in the Amundsen Sea, Antarctica: influence of physical factors on phytoplankton community structure and biomass. Deep-Sea Res Pt I 117:51-60 https://doi.org/10.1016/j.dsr.2016.10.001
  72. Lee YC, Park MO, Jung J, Yang EJ, Lee SH (2016b) Taxonomic variability of phytoplankton and relationship with production of CDOM in the polynya of the Amundsen Sea, Antarctica. Deep-Sea Res Pt II 123:30-41 https://doi.org/10.1016/j.dsr2.2015.09.002
  73. Lilien DA, Joughin I, Smith B, Shean DE (2018) Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt. The Cryosphere 12(4):1415-1431 https://doi.org/10.5194/tc-12-1415-2018
  74. Lim YJ, Kim TW , Lee S, Lee D, Park J, Kim BK, Kim K, Jang HK, Bhavya P, Lee SH (2019) Seasonal variations in the small phytoplankton contribution to the total primary production in the Amundsen Sea, Antarctica. J Geophys Res 124(11):8324-8341 https://doi.org/10.1029/2019jc015305
  75. Liss PS, Malin G, Turner SM, Holligan, PM (1994) Dimethyl sulphide and phaeocystis: a review. J Marine Syst 5:41-53 https://doi.org/10.1016/0924-7963(94)90015-9
  76. Martin JH., Knauer GA., Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. DeepSea Res 34:267-285. doi:10.1016/0198-0149(87)90086-0
  77. Miles T, Lee SH, Wahlin A, Ha HK, Kim TW, Assmann KA, Schofield O (2016) Glider observations of the Dotson ice shelf outflow. Deep-Sea Res Pt II 123:16-29 https://doi.org/10.1016/j.dsr2.2015.08.008
  78. Milillo P, Rignot E, Mouginot J, Scheuchl B, Morlighem M, Li X, Salzer JT (2017) On the short-term grounding zone dynamics of Pine Island Glacier, West Antarctica, observed with COSMO-SkyMed interferometric data. Geophys. Res Lett 44:10,436-10,444 https://doi.org/10.1002/2017GL074320
  79. Moran XAG, Lopex-Urrutia A, Calvo-diaz A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer ocean. Global Change Biol 16:1137-1144 https://doi.org/10.1111/j.1365-2486.2009.01960.x
  80. Oliver H, St-Laurent P, Sherrell RM, Yager PL (2019) Modeling iron and light controls on the summer Phaeocystis antarctica bloom in the Amundsen Sea Polynya. Global Biogeochem Cy 33(5):570-596 https://doi.org/10.1029/2018GB006168
  81. Park J, Kuzminov FI, Bailleul B, Yang EJ, Lee S, Falkowski PG, Gorbunov MY (2017) Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica. Limnol Oceanogr 62(5):2260-2276 https://doi.org/10.1002/lno.10565
  82. Park J, Shin EK, Ko E, Park T (2019a) Atmospheric factors influencing biological productivity in the Antarctic polynyas, derived from satellite and reanalysis data. IEEE Geosci Remote S 10(11):1113-1122
  83. Park K, Hahm D, Choi JO, Xu S, Kim HC, Lee S (2019b) Spatiotemporal variation in summer net community production in the Amundsen Sea Polynya: a self-organizing map analysis approach. Cont Shelf Res 184:21-29 https://doi.org/10.1016/j.csr.2019.07.001
  84. Planquette H, Sherrell RM, Stammerjohn S, Field MP (2013) Particulate iron delivery to the water column of the Amundsen Sea, Antarctica. Mar Chem 153:15-30. doi:10.1016/j.marchem.2013.04.006
  85. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461(7266):971-975 https://doi.org/10.1038/nature08471
  86. Pritchard HD, Ligtenberg SR, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484(7395):502-505 https://doi.org/10.1038/nature10968
  87. Randall-Goodwin E, Meredith MP, Jenkins A, Yager PL, Sherrell RM, Abrahamsen EP, Guerrero R, Yuan X, Mortlock RA, Gavahan K, Alderkamp, A-C, Ducklow H, Robertson R, Stammerjohn SE (2015) Freshwater distributions and water mass structure in the Amundsen Sea polynya region, Antarctica. Elem Sci Anth 3:000065 https://doi.org/10.12952/journal.elementa.000065
  88. Reigstad M, Wassmann P (2007) Does Phaeocystis spp. contribute significantly to vertical export of organic carbon? Biogeosciences 83:217-234. doi:10.1007/s10533-007-9093-3
  89. Rignot E, Jacobs S, Mouginot J, Scheuchl B (2013) Ice shelf melting around Antarctica. Science 341:266-270 https://doi.org/10.1126/science.1235798
  90. Sabine C, Feely R, Wanninkhof R, Dickson A, Millero F, Hansell D, Swift J, McNichol A, Key R (2012) Carbon dioxide, hydrographic, and chemical data obtained during the R/V Nathaniel B. Palmer cruise in the Southern Ocean on CLIVAR repeat hydrography section S04P (Feb. 19-Apr. 23, 2011). https://doi.org/10.3334/cdiac/otg.clivar_s04p_2011 Accessed 2 Jan 2022
  91. Shen Y, Benner R (2018) Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon. Sci Rep 8:2542. doi:10.1038/s41598-018-20857-5
  92. Sherrell R, Lagerstrom M, Forsch K, Stammerjohn S, Yager P, Miller LA (2015) Dynamics of dissolved iron and other bioactive trace metals (Mn, Ni, Cu, Zn) in the Amundsen Sea Polynya, Antarctica. Elementa 3:000071. doi:10.12952/journal.elementa.000071
  93. Sigman DM, Hain MP, Haug GH (2010) The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466(7302):47-55. doi:10.1038/nature 09149
  94. Smith HJ, Foster RA, McKnight DM, Lisle JT, Littmann S, Kuypers MM, Foreman CM (2017) Microbial formation of labile organic carbon in Antarctic glacial environments. Nat Geosci 10(5):356-359 https://doi.org/10.1038/ngeo2925
  95. Smith WO Jr, Shields AR, Peloquin JA, Catalano G, Tozzi S, Dinniman MS, Asper VA (2006) Interannual variations in nutrients, net community production, and biogeochemical cycles in the Ross Sea. Deep-Sea Res Pt II 53:815-833. doi:10.1016/j.dsr2.2006.02.014
  96. Song HJ, Kang JJ, Kim BK, Joo H, Yang EJ, Park J, Lee SH, Lee SH (2016) High protein production of phytoplankton in the Amundsen Sea. Deep-Sea Res Pt II 123:50-57 https://doi.org/10.1016/j.dsr2.2015.07.015
  97. Stammerjohn S, Massom R, Rind D, Martinson D (2012) Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys Res Lett 39(6):L06501. doi:10.1029/2012GL050874
  98. Stefels J, Van Boekel WHM (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar Ecol-Prog Ser 97:11-18 https://doi.org/10.3354/meps097011
  99. St-Laurent P, Yager P, Sherrell R, Oliver H, Dinniman M, Stammerjohn S (2019) Modeling the seasonal cycle of iron and carbon fluxes in the Amundsen Sea Polynya, Antarctica. J Geophys Res 124(3):1544-1565 https://doi.org/10.1029/2018jc014773
  100. St-Laurent P, Yager P, Sherrell R, Stammerjohn S, Dinniman M (2017) Pathways and supply of dissolved iron in the Amundsen Sea (Antarctica). J Geophys Res 122(9):7135-7162 https://doi.org/10.1002/2017JC013162
  101. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Pt II 56(8):554-577. doi:10.1016/j.dsr2.2008.12.009
  102. Thoma M, Jenkins A, Holland D, Jacobs S (2008) Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys Res Lett 35(18):L18602. doi:10.1029/2008GL034939
  103. Turner J, Orr A, Gudmundsson GH, Jenkins A, Bingham RG, Hillenbrand CD, Bracegirdle TJ (2017) Atmosphere-ocean-ice interactions in the Amundsen Sea embayment, West Antarctica. Rev Geophys 55(1):235-276. doi:10.1002/2016RG000532
  104. Wahlin AK, Yuan X, Bjork G, Nohr C (2010) Inflow of warm circumpolar deep water in the central Amundsen shelf. J Phys Oceanogr 40:1427-1434 https://doi.org/10.1175/2010JPO4431.1
  105. Yager PL, Sherrell RM, Stammerjohn SE, Ducklow HW, Schofield OME, Ingall ED, Wilson SE, Lowry KE, Williams CM, Riemann L, Bertilsson S, Alderkamp AC, Dinasquet J, Logares R, Richert I, Spiler RE, Melara AJ, Newstead RG, Post AF, Swalethorp R, van Dijken GL (2016) A carbon budget for the Amundsen Sea Polynya, Antarctica: estimating net community production and export in a highly productive polar ecosystem Amundsen Sea Polynya carbon budget. Elementa 4:000140. doi:10.12952/journal.elementa.000140
  106. Yang EJ, Lee Y, Lee S (2019) Trophic interactions of micro-and mesozooplankton in the Amundsen Sea polynya and adjacent sea ice zone during austral late summer. Prog Oceanogr 174:117-130 https://doi.org/10.1016/j.pocean.2018.12.003
  107. Yang EJ. Jiang Y, Lee S (2016) Microzooplankton herbivory and community structure in the Amundsen Sea. Antarctica Deep-Sea Res Pt II 123:58-68. doi:10.1016/j.dsr2.2015.06.001
  108. Yoon ST, Lee WY (2021) Quality control methods for CTD data collected by using instrumented marine mammals: a review and case study. Ocean Polar Res 43(4):321-334 https://doi.org/10.4217/OPR.2021.43.4.321
  109. Zhang M, Park KT, Yan J, Park K, Wu Y, Jang E, Gao W, Tan G, Wang J, Chen L (2020) Atmospheric dimethyl sulfide and its significant influence on the sea-to-air flux calculation over the Southern Ocean. Progr Oceanogr 186:102392 https://doi.org/10.1016/j.pocean.2020.102392
  110. Zheng Y, Heywood KJ, Webber BGM (2021) Winter seal-based observations reveal glacial meltwater surfacing in the southeastern Amundsen Sea. Commun Earth Environ 2:40. doi:10.1038/s43247-021-00111-z