• Title/Summary/Keyword: Early Compressive Strength

Search Result 654, Processing Time 0.025 seconds

Prediction of Strength of High-Strength Concrete by the Maturity Method (적산온도 방식을 이용한 고강도 콘크리트의 강도 예측)

  • 길배수;김태근;한장현;권영진;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.259-264
    • /
    • 1999
  • The aim of this study of to compare the development of compressive strength of high-strength concrete with maturity and investigate the applicability the strength prediction models. An experiment was attempted on the high-strength concrete mixes using portland cement replaced by silica fume of 10% by weight of cement, the water-binder ratios of mixes being 0.30 and 0.35, the curing temperatures being 30, 20, 10, 5$^{\circ}C$. Test results of mixes are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of high-strength concrete. The constant of strength prediction equation were determined from test results, and the equation was adopted to predict the strength of slab(W80$\times$D100$\times$H20cm). The slab was cast in the laboratory from the same batch water-binder ratio of 0.30, and cores were cut from slab in order to estimate the actual strength. These values are used to compare with predicted value. The present study allows more realistic determination of early age compressive strength of high-strength concrete and can be efficiently used to control the quality in actual construction.

  • PDF

A Review on the Determination of the Protecting Duration of Frost Damage at Early Ages in Cold Weater Concreting Based on the Analysis of Strength Development (강도증진해석에 의한 한중콘크리트의 초기동해 방지기간 설정에 관한 검토)

  • 한민철;김효구;황인성;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.179-182
    • /
    • 1999
  • A protections from the frost damage at early ages is one of the serious problems to be considered in cold weather concreting. Frost damage at early ages brings about the harmful influences on the concrete structures such surface cracks and the loss of strength. Therefore, in this paper, the protecting durations of frost damage at early ages according to the standard specifications provided in KCI(Korean Concrete Institute) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. According to the results, as W/C and compressive strength for protecting from frost damages at early ages increased, longer protecting duration is required. It shows that the protecting durations of FAC(Fly Ash Cement) are longer than those of OPC(Ordinary Portland Cement).

  • PDF

The Effect of Cement Admixtures on Solidification of Tannery Sludge based Cement Method (피혁슬러지 고형화시 시멘트 혼화제의 영향)

  • 주소영;박상찬;전태성;손종렬;김태영
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.36-44
    • /
    • 2003
  • The cement-based system among S/S(Solidification/Stabilization) is widely used to treat hazardous wastes. In this study, tannery sludge was solidified to evaluate the stabilization effects of using admixtures in the cement-based S/S. Fly ash as substitute also used to increase the strength of the S/S of hazardous waste. The compressive strength measurement and leaching experiment of chromium metal of solidified mortar were carried out to compare and evaluate the physical and chemical characteristics of solidified hazardous waste sludge. From the result of this study, there was increased of compressive strength by using AEW-3(early-hardening AE water reducing agent), and leaching concentration of chromium became low enough to satisfy the regulatory criteria. The successful solidification for the organic contaminant and heavy metal in hazardous waste should enable to treat by cement-based system using early-hardening AE water reducing admixture and fly ash as substituted cement.

An Experimental Study on the Properties of High Volume Fly Ash Concrete (플라이애시를 대량 사용한 콘크리트의 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Jang, Jong-Ho;Choi, Sung-Woo;Choi, Hee-Yong;Park, Sun-Gyu;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.549-554
    • /
    • 2000
  • Generally, it is indicated that concrete using fly ash as a part of cement content has lower early strength, and faster carbonation velocity. To improve these problems and provide useful information for high volume fly ash concrete, the properties of concrete - those include slump, bleeding, setting time, compressive strength and carbonation depth etc. - which contained large amount of fly ash as a part of fine aggregate were investigated experimentally. According to test results, it was found that the compressive strength of the concrete increased in early age as well as in long term age with the increase of the fly ash content. And the carbonation depth of concrete using fly ash as a part of fine aggregate was lower than that of plain concrete(FA 0kg/ $\textrm{m}^3$).

  • PDF

A Study on the Grouting Using a Anti-Swelling of mud stone (미고결된 이암층의 Swelling 방지 그라우팅에 대한 연구)

  • Chun, Byung-Sik;Jung, Kyoung-Sik;Do, Jong-Nam;Lee, Jung-Jae;Kim, Chang-Geun;Kim, Jong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1204-1209
    • /
    • 2006
  • Grouting operate to reinforce expanded clay ground. Cement grouting is one of the most frequently used techniques for underground construction. This work is going to use to add an electrolytic ion to boring water for expanded reduction. To construct underground structures on expanded clay ground is operated pre-grouting that it is the barrier wall previous excavation to prevent an accident. Grouting for early compressive strength development is made a type of suspension. That grouting aims to prevent the swelling magnification in length of time. From now on, grouting is became a type of higher strength suspension to develop early compressive strength.

  • PDF

The study on annual evaluation of CO2 and general economic for precast concrete without steam curing (증기양생이 불필요한 프리캐스트 콘크리트의 연간 CO2 저감량 및 경제성 평가)

  • Sung, Myung Jin;Min, Tae-Beom;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.42-43
    • /
    • 2013
  • Nowadays, Precast Concrete is adopted on most of construction, because of shortening construction period and good quality. In precast concrete, steam curing is necessary for getting proper strength, but it causes much CO2 and economc. Therefore, on this study, by using type III cement and hardening accelerator, early compressive strength was shown 13MPa for 6hr. From the result, removal form could be shorten. Furthermore, annual CO2 was reduced as much as 24% and also annual cost was decreased as much as 12%.

  • PDF

Assessment of Ultrasonic Pulse Velocity Method for Early Detection of Frost Damage in Concrete (콘크리트의 초기동해 진단을 위한 초음파 속도법의 적용 가능성 평가)

  • Moon, Sohee;Lee, Taegyu;Choi, Heesup;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.193-202
    • /
    • 2024
  • This research delves into the evaluation of the suitability of ultrasonic pulse velocity as a diagnostic tool for early detection of frost damage in concrete. The investigation involves the measurement of compressive strength and ultrasonic pulse velocity concerning the depth of freezing for individual mortar specimens, followed by an analysis of their microstructure and their interrelation. The findings indicate a consistent decrease in both compressive strength and ultrasonic pulse velocity with increasing freezing depth. Furthermore, a correlation between compressive strength and ultrasonic pulse velocity concerning the depth of early frost damage is established. Consequently, the study asserts the potential of utilizing the ultrasonic pulse velocity method for early detection of frost damage in concrete, with prospects for quantifying the depth of damage through further research endeavors.

Maturity-Based Model for Concrete Compressive Strength with Different Supplementary Cementitious Materials (혼화재 치환율을 고려한 성숙도 기반의 콘크리트 압축강도 평가 모델)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Jeon, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.82-89
    • /
    • 2014
  • The purpose of this study is to propose a simple model to evaluate the compressive strength development of concrete with various supplementary cementitious materials (SCMs) and cured under different temperatures. For the generalization of the model, the ACI 209 parabola equation was modified based on the maturity function and then experimental constants A and B and 28-day compressive strength were determined from the regression analysis using a total of 265 data-sets compiled from the available literature. To verify the proposed model, concrete specimens classified into 3 Groups were prepared according to the SCM level as a partial replacement of cement and curing temperature. The analysis of existing data clearly revealed that the 28-day compressive strength decreases when the curing temperature is higher and/or lower than the reference curing temperature ($20^{\circ}C$). Furthermore, test results showed that the compressive strength development of concrete cured under $20^{\circ}C$ until an early age of 3 days was marginally affected by the curing temperature afterward. The proposed model accurately predicts the compressive strength development of concrete tested, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.00 and 0.08, respectively.

Change in compressive strength of lightweight geopolymers after immersion (침지 후 경량 지오폴리머의 압축강도 변화)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.174-181
    • /
    • 2021
  • Lightweight geopolymers were fabricated by using IGCC (integrated gasification combined cycle) slag and Si sludge which are classified as general wastes (recyclable resources). Three curing methods were tried to investigate the changes in compressive strength and density according to the curing method and immersion time. Immersion period was tried up to 21 days to observe long-term performance in water. Compressive strength of the specimens cured in oven decreased abruptly with an increase in immersion time. Compressive strength of the specimen cured in autoclave was low after 3 and 7 day immersion; however, increased rapidly after 21 day immersion. On the contrary, compressive strength of the specimen cured in autoclave and oven was high but substantially decreased after 21 day immersion. Conclusively, it was speculated that oven curing is effective for the compressive strength development at early age; however, autoclave curing is more desirable for the long-term performance in water.

A Study on the Non Destructive Test by P Type Schmidt Hammer for Early Quality Control of Concrete (콘크리트의 초기강도품질관리를 위한 P형 슈미트햄머법 비파괴시험에 관한 연구)

  • 김기정;신병호;이용성;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.157-162
    • /
    • 2002
  • This study is intended to present a reference data for effective quality control of concrete through comparing the rebound value of P type schmidt hammer with the compressive strength with variation of mix proportion and curing condition. According to the results, the air-curing specimen shows the higher rebound value than standard specimen except high strength in the whole. Also the vertical stroke shows higher rebound value than horizontal stroke in standard specimen, however, the rebound value of the two does not show prominent difference in air-curing specimen. The estimation equation of compressive strength derived from this experiment estimates the compressive strength more largely than the estimation equation in P type schmidt hammer manual. Therefore it is thought that the new estimation equation that fits our condition will have to be presented.

  • PDF