• Title/Summary/Keyword: ETFE 막재

Search Result 8, Processing Time 0.022 seconds

Tensile Strength Characteristics of ETFE Roof Material in Large Membrane Structuresb (초대형 막구조물 지붕용 ETFE 필름 막재의 인장특성)

  • Lee, Seung-Jae;Lee, So-Ra
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • ETFE is the abbreviation of Ethylen Tetra Fluoro Etylene, a sort of colorless and transparent granules. The advantage ETFE film has daylight transmission and chemical the resistance and The thickness of ETFE film is used to from $50{\mu}m$ to $300{\mu}m$ and tensile strength of ETFE film changes from 40MPa to 60MPa and the tensile strain at break can get to about 300-400%. In this paper, ETFE film carried out the tensile proprieties, such as the tensile strain at break, the tensile strength are examined.

  • PDF

Tensile Test and Creep Tests of ETFE Membrane (ETFE 막재에 대한 인장실험과 크리프 실험)

  • Kim, Jae-Yeol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.57-64
    • /
    • 2010
  • Uniaxial tensile tests of ETFE membrane are performed in this paper. Three kinds ETFE membrane with different thickness are used in the tests. The tensile strength, the tensile strain at break and the stress-strain curve are obtained from the tests. Futhermore, The cycle loading test of ETFE membrane is carried out through using different values of cycle stress. The residual strain, the relaxation of stress and the change of the elastic modulus of foil are investigated. In the creep test, three kinds of temperature (25, 40 and 60 $^{\circ}C$)and three kinds of stress(3,6and9 MPa) are set respectively and the creep time lasts 24 hours.

  • PDF

Mechanical Characteristic Test of Architectural ETFE Film Membrane (건축용 ETFE 필름 막의 역학적 특성 시험)

  • Park, Kang-Geun;Yoon, Seoung-Hyun;Bae, Boo-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.77-82
    • /
    • 2009
  • ETFE is the abbreviation of Ethlene Tetra Fluoro Ethlene, a sort of colorless and transparent granules. The advantage of ETFE film has chemical resistance, anti-stick property, very lightly material. The thickness of ETFE film is used to from 50 ${\mu}m$ to 300 ${\mu}m$ and have superior ability of daylight transmission and elongation, while the strength is lower than of fabric membrane. The tensile strength of ETFE film changes from 40Mpa to 60Mpa and the tensile strain at break can get to about 300-400%. The mechanical characteristic test of ETFE film is described in this paper. The tensile strain at break, the tensile strength and the stress-strain curve are obtained from the test. And then it was analyzed stress-strain characteristic by temperature and mechanical characteristic by cycling load.

  • PDF

Material Properties of ETFE Membrane under Various Temperature (온도변화에 따른 ETFE 막재의 재료특성 연구)

  • Kim, Young-Ho;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.115-123
    • /
    • 2011
  • It is needed to investigate the material properties of ETFE foil under various temperatures because ETFE membrane foils have very thin depth and relatively high flexibility. In this paper, the material properties of ETFE membrane foil obtained from 3 testes under various temperatures are presented. First, the uniaxial test under four temperatures as -20$^{\circ}C$, 0$^{\circ}C$, +20$^{\circ}C$ and +40$^{\circ}C$ was performed. Each 5 specimen was tested and the yield stress, tensile strength and the Young's modulus of the foils are obtained. Second, the creep testes under three temperatures as 25$^{\circ}C$, 40$^{\circ}C$ and 60$^{\circ}C$, 3MP, 6MP and 9MP tension load was subjected to the specimen and the creep characteristics was investigated. Finally, the tear test under $5^{\circ}C$, $^0{\circ}C$ and $20^{\circ}C$ was performed. It is concluded that the shape of stress-strain curve or general behaviors are similar with that of normal temperatures but the mechanical characteristics of ETFE membrane foils were affected by the temperatures, obviously.

Test on the Mechanical Characteristics of Glass Fiber Membrane (유리섬유 막재의 역학적 특성에 관한 시험)

  • Park, Kang-Geun;Yoon, Sung-Kee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • Membrane structures are now used in various ways throughout the world with the merits of free shape, lightness, durability, sunlight transmittance and homogeneous material. The development of new membrane material opened up new possibility for the design of new building structures. Recently it was mainly used PVC, PVF, PVDF, PTFE, ETFE membrane for using the roofing material of membrane structures. Some problems of membrane materials have fire proofing, lack of strength, self cleaning capacity, tear resistance, durability, heat insulation, sound insulation and elasticity. For the solution of this problems, it will be tested the mechanical properties of membrane material about tensile strength, tearing resistance, etc.

  • PDF

Basic Test on the Mechanical Characteristics of Polyester Membrane (폴리에스터 막재의 역학적 특성에 관한 기초시험)

  • Park, Kang-Geun;Yoon, Seoung-Hyun;Lee, Jang-Bok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • Membrane structures are now used in various ways throughout the world with the merits of free shape, lightness, durability, sunlight transmittance and homogeneous material. The development of new membrane material opened up new possibility for the design of new building structures. Recently it was mainly used PVC, PVF, PVDF, PTFE, ETFE membrane for using the roofing material of membrane structures. Some problems of architectural membrane have fire proofing, lack of strength, tear resistance, durability and elasticity. For the estimation of this problems, it will be tested the basic mechanical properties of membrane material about tensile strength, tearing resistance and repeated loading behavior. Elastic modulus is 337.30~1257.63N/$mm^2$, and strain is 17.90~26.91%.

  • PDF

Flame Resistance Performance of Glass Fiber and Polyester Fiber Architectural Membranes (건축용 유리섬유 및 폴리에스테르섬유 막재의 난연특성)

  • Kim, JiHyeon;Song, Hun
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • Membrane structures can be used to create diverse lightweight structural forms using ductile membranes made of coated fabric. Using membrane structures, it is possible to construct large covered spaces relatively quickly and economically, and hence, they are being applied within various applications. The structures are light-weight, transparent, flexible in their application, economical and easy to maintain, and as such, their usage is being expanded. However, despite their prevalence, the standard for membrane material performance in terms of fire safety is still inadequate, and the development of membrane materials with excellent flame resistance performance is being demanded. This study determined flame resistance performance of architectural membranes, including PTFE, PVDF, PVF and ETFE film membranes, through flammability testing and incombustibility testing.

Prediction Method of Long Term Creep Behavior for ETFE Foil by Using Viscoelastic-Plastic Model (점탄소성 모델을 이용한 ETFE 막재의 장기 크리프 거동 예측기법 연구)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.3
    • /
    • pp.93-100
    • /
    • 2014
  • Ethylene Tetrafluoroethylene (ETFE) has been widely used in long-span buildings because of its light weight and high transparency. This paper studies the short and long term creep behaviour of ETFE foil. A series of short-term creep and recovery tests were performed, in which the residual strain was observed. A long-term creep test of the ETFE foil was also performed over 110 days. A viscoelastic-plastic model was then established to describe the short-term creep and recovery behaviour. The model contains a traditional multi-Kelvin part and an added steady-flow component to represent the viscoelastic and viscoplastic behaviour, respectively. The model successfully fit the data for three stresses and six temperatures. Additionally, time-temperature equivalency was adopted to predict the long-term creep behaviour of ETFE foil. Horizontal shifting factors were determined from the process of shifting creep-curves at six temperatures. The long-term creep behaviours at three temperatures were predicted. Finally, the long-term creep test showed that the short-term creep test at identical temperatures insufficiently predicted additional creep behaviour, and the long-term test verified the horizontal shifting factors derived from the time-temperature equivalency.