• Title/Summary/Keyword: ESS system

Search Result 540, Processing Time 0.028 seconds

Solar ESS Peak-cut Simulation Model for Customer (수용가 대응용 태양광 ESS 피크컷(Peak-cut) 시뮬레이션 모델)

  • Park, Seong-Hyeon;Lee, Gi-Hyun;Chung, Myoung-Sug;Chae, U-ri;Lee, Joo-Yeuon
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.131-138
    • /
    • 2019
  • The world's electricity production ratio is 40% for coal, 20% for natural gas, 16% for hydroelectric power, 15% for nuclear power and 6% for petroleum. Fossil fuels also cause serious problems in terms of price and supply because of the high concentration of resources on the earth. Solar energy is attracting attention as a next-generation eco-friendly energy that will replace fossil fuels with these problems. In this study, we test the charge-operation plan and the discharge operation plan for peak-cut operation by applying the maximum power demand reduction simulation. To do this, we selected the electricity usage from November to February, which has the largest amount of power usage, and applied charge / discharge logic. Simulation results show that the contract power decreases as the peak demand power after the ESS Peak-cut service is reduced to 50% of the peak-target power. As a result, the contract power reduction can reduce the basic power value of the customer and not only the economic superiority can be expected, but also contribute to the improvement of the electric quality and stabilization of the power supply system.

A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle (다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구)

  • An Sang-Jun;Kim Tae-Jin;Lee Kyo Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines

  • Yuan, Chang;Liu, Chang;Yang, Dan;Zhou, Ruibing;Tang, Niang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1111-1126
    • /
    • 2018
  • In modern power systems, distributed generators (DGs) result in high stress on system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method referred to as a virtual synchronous machine (VSM) has been proposed, which brought new characteristics to inverters such as synchronous machines (SM). DGs employing an energy storage system (ESS) provide inertia and damping through VSM control. Meanwhile, energy storage presents some physical constraints in the VSM implementation level. In this paper, a VSM mathematical model is built and analyzed. The dynamic responses of the output active power are presented when a step change in the frequency occurs. The influences of the inertia constant, damping factor and operating point on the ESS volume margins are investigated. In addition, physical constraints are proposed based on these analyses. The proposed physical constraints are simulated using PSCAD/EMTDC software and tested through RTDS experiment. Both simulation and RTDS test results verify the analysis.

Mode Transfer Sequence and Control of Single-phase UPS System (단상 UPS 시스템의 모드 절환 시퀀스 및 제어)

  • Lee, Sang-Suk;Lee, Soon-Ryung;Choi, Bong-Yeon;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.108-115
    • /
    • 2014
  • Recently, Uninterruptible power supply(UPS) is spotlighted from concern about black out, due to reserve power problem caused by increased power consumption. When fault occurs on the grid, UPS system supplies power to loads instead of the grid. Also, it is an advantage of possible operation as Energy storage system(ESS). Bi-directional power control of AC/DC Pulse width modulation(PWM) converter is essential for grid-connected UPS system. And, mode transfer control has to be performed considering phase and dynamic characteristic under grid condition. In this paper, control of mode transfer and bi-directional power control of AC/DC PWM converter is proposed for UPS system. Also, it is verified by simulation and experimental results.

Operation Planning of Reserve in Microgrid Considering Market Participation and Energy Storage System

  • Lee, Si Young;Jin, Young Gyu;Kim, Sun Kyo;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1089-1095
    • /
    • 2014
  • Innumerable microgrids would be operated independently by individual operators in a future smart grid. This kind of decentralized power system requires entirely different operation scheme in the actual power system and electricity market operation. Especially, frequency regulation is very important for successive energy trade in this multi-microgrid circumstance. This paper presents an optimal energy and reserve market participation strategy and operation strategy of energy storage system (ESS) by a microgrid operator (MGO). For definite evaluation of the proposed strategy, we postulate that the MGO should participate in the Power Exchange for Frequency Control (PXFC) market, which was devised by Maria Ilic and her coworkers and is suitable to the decentralized operation circumstances. In particular, optimal reserve capacity of the frequency control market and optimal market participation ratio of ESS between frequency control market and energy market are derived theoretically and evaluated by simulations utilizing Nordic Pool Elspot price data.

Simulation analysis of a renewable energy based microgrid using RTDS (RTDS를 이용한 신재생에너지 기반 마이크로그리드 시뮬레이션 해석)

  • Heo, Se-Rim;Kim, Gyeong-Hun;Lee, Hyo-Guen;Hwang, Chul-Sang;Park, Min-Won;Yu, In-Keun;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.143-144
    • /
    • 2011
  • Due to enhanced demands on quality, security and reliability of the electric power energy system, a microgrid has become a subject of special interest. In this paper, output characteristics of energy storage system (ESS) with an electric double layer capacitor (EDLC) and battery energy storage system (BESS) of a renewable energy based microgrid were analyzed under grid-connected and islanded operation modes. The microgrid which consists of photovoltaic and wind power turbine generators, diesel generator, ESS with an EDLC, BESS and loads was modeled using real time digital simulator. The results present the effective control patterns of the microgrid system.

  • PDF

DC-Voltage Regulation for Solar-Variable Speed Hybrid System (태양광 기반의 가변속 하이브리드 시스템을 위한 직류 전압 제어)

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho;Song, Yujin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources, energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized control, the maximum power should be tracked from renewable resources during different operating modes of the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed. Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control measures.

A Study on the Optimization of Power Consumption Pattern using Building Smart Microgrid Test-Bed (Building Smart Microgrid Test-Bed를 이용한 전력사용량 패턴 최적화방안 연구)

  • Lee, Sang-Woo;Kang, Jin-Kyu;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • The microgrid system is the combination of photovoltaic(PV) array, load, and battery energy storage system. The control strategies were defined as multi-modes of operation, including rest operation without use of battery, power charging, and power discharging, which enables grid connected mode or islanded mode. Photovoltaic power is a problem of the uniformity of power quality because the power generated from solar light is very sensitive to variation of insolation and duration of sunshine. As a solution to the above problem, energy storage system(ESS) is considered generally. There fore, in this study, we did basic research activities about optimization method of the amount of energy used, using a smart microgrid test-bed constructed in building. First, we analyzed the daily, monthly and period energy pattern amount of power energy used, and analyzed PV power generation level which is built on the roof. Utilizing building energy pattern analysis data, we was studied an efficient method of employing the ESS about building power consumption pattern and PV generation.

A Study on the Improvement of the Current Quality Using the Energy Storage System (에너지저장시스템을 이용한 전류품질 개선에 관한 연구)

  • 전영환;김지원;전진홍;김응상
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.286-293
    • /
    • 2001
  • Recently, as the power demand grows, the concern on the Energy Storage System (ESS) is being increased. Among the various type of ESS, it is revealed that the Battery Energy Storage System (BESS) is the most economic and applicable. In this paper, the operating algorithm of the BESS including the solution of the power quality problem is studied. The BESS is connected to the power system in parallel, and the functions of the reactive power suppression and the harmonics and unbalanced current elimination, are added to the functions of the BESS. Through the computer simulations and experiments, the functions of the proposed algorithms are verified.

  • PDF

Proposal Protection Algorithm of Dendritic Lithium for Battery Second Use ESS (재사용 ESS를 위한 리튬 배터리 덴드라이트 보호 알고리즘 제안)

  • Song, Jung-Yong;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.422-426
    • /
    • 2018
  • The lithium-ion battery pack of an electric vehicle (EV) deserves to be considered for an alternative use within smart-grid infrastructure. Despite the long automotive service life, EV batteries retain over 70~80% of their initial capacity. These battery packs must be managed for their reliability and safety. Therefore, a battery management system (BMS) should use specific algorithms to measure and estimate the status of the battery. Most importantly, the BMS of a grid-connected energy storage system (ESS) must ensure that the lithium-ion battery does not catch fire or explode due to an internal short from uncontrolled dendrite growth. In other words, the BMS of a lithium-ion battery pack should be capable of detecting the battery's status based on the electrochemical reaction continuously until the end of the battery's lifespan. In this paper, we propose a new protection algorithm for a dendritic lithium battery. The proposed algorithm has applied a parameter from battery pack aging results and has control power managing.