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Abstract

Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources,

energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than

AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation

because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC

microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability

of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized

control, the maximum power should be tracked from renewable resources during different operating modes of

the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed.

Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load

shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation

is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control

measures.
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1. Introduction

Renewable energy integration in today's power

production system has been considered as a feasible

solution in microgrid technology[1]. As the central

controlled microgrid needs a real time feedback based

on communication from the entire system to the

central controller, it needs a high speed data

exchange. But it is not preferable in stand-alone DC

microgrid (DCMG) because it may result to the

reduction of system reliability due to possible

communication errors and delay time. Contrarily, the

voltage droop control can be utilized so that all units

may be controlled autonomously using real time data

detected locally
[2],[3]
.

DCMG control system has to make sure that some

changes can occur in the system[4], for example one

source, energy storage system (ESS) or some loads

may be removed from or added to the system

anytime depending on present circumstances. It should

also be capable to assure the optimum power flow

balance, and finally to enable the ESS to compensate

the possible voltage fluctuation and to support the

system to reduce or rise the power surplus or deficit
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Fig. 1. Configuration of hybrid DC microgrid system.

accordingly[2],[5],[6].

In principle, as previously studied
[7]
, the diesel

generator must be designed to meet the average load.

The use of variable speed diesel generator (VSDG) in

a stand-alone DCMG results to the improvement of

energy efficiency
[8]
and the fuel consumption reduction

compared to the constant speed diesel generator

(CSDG) and this increases the reliability of whole

system.

Various reports about DCMG control and its

applications have been published, such optimal control

strategies
[9]
, droop control

[10]-[12]
, supervisory control

for energy cost management[13], Fuzzy control and

Gain-scheduling technique
[14]
, etc...

The decoupling of low and high frequency power

components based method which used battery's

current error component to control the

super-capacitors (SC) was proposed
[15]
. The combined

energy storage (batteries and SC) with high energy

and power density to stabilize the power flow in the

system was studied
[16]
.

Many frameworks on AC/DC microgrids were

reported. The operational mode classification of the

hybrid AC/DC microgrid according to the power flow

was discussed[17],[18]. The comparison between AC and

DC microgrids with distributed energy resources was

studied
[19]
. This comparison reveals that DCMG

systems will be the right candidates for the energy

systems in the future with the influence of the

electrical system projected to increase the number of

DC powered components for residential and industrial

application.

Therefore, to maintain the DC voltage of grid,

the description of designing a controller that based on

the combination of current mode control (CMC) and

linear quadratic regulator (LQR) control method was

studied [20].

Fig. 2. Proposed operation system.

This paper discusses a method to regulate DC

voltage that follows a proposed operating scheme of

power management and power sharing priorities in

DCMG, as well as coordinating its components using

well-designed controllers that present high

performance with constant power loads (CPLs). Fig. 1

shows the configuration of DCMG to consider in this

paper.

Furthermore, this paper is organised as follows:

Section II presents the operation modes and control

methods to achieve a voltage regulation. Section III

contains the simulation results of the system in

different cases. The conclusion is made in section IV.

2. Proposed operation and control strategies

  2.1 Operation system

Fig. 2 shows the proposed operation ranges of

DCMG system. It can be divided into three operation

ranges that operate in two modes (VSDG ON or OFF).

Operation range A:

In this range, the system operates properly at a

regulated voltage which equals to the DC-reference

bus voltage 
 and the total available power meets

the load demand in a coordinated way as described

by flowcharts shown in Fig. 3 and Fig. 4. The ESS

is operated to eliminate the voltage fluctuations from

the system, so it can be charging or discharging in

order to maintain the bus voltage constant.

In mode 1 (VSDG OFF), the PV power  and

the ESS power  together meet the load demand.

The ESS may be in charging or discharging mode

but the main concern in this range is that the voltage

variation stays approximately zero (≈).
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     (2)

     (4)

   (5)

    (6)

     

    (1)

    (3)

Fig. 3. Proposed operation algorithm for mode 1.

In mode 2 (VSDG ON), the voltage variation keeps

being approximately zero; firstly, after the generator

power  is increased or added to the system, and/or

after the load shedding is applied on the system when

the voltage variation  gets under the minimum

tolerable voltage degradation (max).

Secondly, after the generator power is decreased or

removed from the system, and/or after the PV power

is curtailed when the voltage variation  gets over

the maximum tolerable voltage degradation

(  max ). In this case, the ESS may be in

charging or discharging mode.

Operation range B:

The system is said to be operating in range B if

the total output power (PV power, generator power,

and ESS power) is lower than the load demand under

the condition that max ≤ . In such

conditions, the ESS stays in discharging mode and its

power is noted  .

In mode 1, the photovoltaic power  and the

ESS discharging power  both cannot satisfy the

load demand. The voltage variation  remains

lower than zero and greater than or equal to the

minimum tolerable voltage degradation.
   

In mode 2, the same condition may occur even

Fig. 4. Proposed operation algorithm for mode 2.

when the VSDG runs at any speed if a negative 

is still greater than or equal tomax .

Operation range C:

The voltage variation is caused by the power flow

unbalance due to the lower load demand or the higher

power production. In this range, the voltage variation

condition is ≤max. The ESS keeps the

charging mode in this conditions and its power is

noted .

In mode 1, the photovoltaic power  is much

higher than the load demand, so the ESS charging

power  cannot remove all excessive power from

the system. Depending on the power surplus amount,

the voltage variation  varies between zero and

max as defined above.

In mode 2, this situation may occur when VSDG is

running. If the voltage variation keeps being in the

range C's band at any speed of the generator, (even

at the minimum speed), in this case, the system is

said to be in the range C of mode 2.

2.2 Control system

2.2.1 Droop control for DC microgrid

Consider two parallel sources sharing a common

load as shown in Fig. 5. Any voltage difference
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      (9)

Generator output power =   (10)

     
     (8)

    (11)

Generator output power =   (12)

Fig. 5. Equivalent circuit of DC grid with two sources.

Fig. 6. ESS control block diagram.

between sources must result in current circulation

between DC sources. This control regulates the output

reference voltage by means of reducing linearly the

output rated voltage as the output current increases

with virtual output impedance of sources.

The regulated 
 is used by the controller so

that the stable operation can be ensured.

2.2.2 Storage control

In storage control system as shown in Fig. 6, the

ESS output voltage  is compared to the reference

bus voltage 
 and the error is sent to the PI

controller to find the reference current of the storage

system 
 . The current limiter is added to assure

the ESS protection by limiting 
 in  max m ax 

interval. Then the difference between 
 and the

storage current  is sent to the next PI controller

to generate the PWM signal.

2.2.3 PV control

The solar generator is controlled to meet the

maximum power point tracking (MPPT). The PV

voltage  and PV current  are checked by

MPPT to obtain the reference PV voltage 
 and

this later is compared to . The error undergoes PI

control to find an appropriate duty ratio for PWM so

that  may be regulated. The PV control block

diagram is shown in Fig. 7.

Fig. 7. PV control block diagram.

2.2.4 VSDG control

  The main concern of VSDG control system is the

high efficiency and energy cost issues. Different

researches proved that the VSDG should be designed

based on the average load in microgrid and it has to

be able to meet the critical load for short periods.

Typically, a VSDG presents a high efficiency and

minimum fuel consumption when it is running

between its minimum loading and rated values
[21]
.

When a VSDG is working together with batteries in

hybrid system, it results to the economic operation of

VSDG. In mode 2 of operation, if the load power

 is greater than  + ; the difference in

power should be generated by the batteries, if 
is lesser than  + then the surplus power must

be stored in batteries. But when the state of charge

(SOC) is out of limits or when the ESS cannot

handle the power flow unbalance alone, the VSDG

should be responsible of the power shortage or

surplus in the microgrid by varying its output power

depending on the need in the system.

In fact, as the first case, if  ,

then (9) and (10) are valid;

As the second case, if     ,

then (11) and (12) are valid;

Generally, the VSDG output power varies on the

range min max where,

min ≤      ≤ max
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3. Simulation results

PSiM simulator is used as a tool to test and valid

a proposed standalone DCMG system operation. The

simulated photovoltaic power is averaged to be 1200W

and the rated power of VSDG is 1500W. The capacity

of storage system is 750W and the load power

varies from 500W to 1000W. The DC-link voltage for

this study is 200V, and the maximum tolerable

voltage variation max equals 5% of the DC

voltage link which is 10V.

Fig. 8(a) shows a stable DCMG, where the voltage

remains regulated in given conditions, no matter what

change in load,  ≈ . The PV and ESS powers

alone are enough for any load condition.

In Fig. 8(b), the behavior of the system is

represented. From 0s to 0.8s, the system is balanced

for different load changes. The DC-link voltage stays

at a regulated value following the reference DC

voltage that equals to 200V and the system operates

in range A as previously defined. As the ESS stays

in charging mode from 0.55s, the battery reaches the

maximum state of charge, (SOC) at 0.8s. Then the

charging power becomes zero, the DC voltage goes

up around 204V and the system operates in range C

(≈ ).

In Fig. 8(c), the PV power is weakened from 0.2s.

From 0.25s, the ESS starts the discharging mode to

help PV to cover the load demand as the PV power

kept being lowered. From 0.28s, ESS and PV output

powers are no longer able to satisfy the load demand

as the load increases and the ESS power reaches its

maximum capacity, then the system operates in range

B. At 0.4s the voltage degradation tends to go out of

boundaries (≃max ), but the VSDG starts

automatically to cover the power shortage and

regulates the DC voltage to follow the reference DC

voltage.

In Fig. 8(d), the voltage is regulated from the

beginning till 0.4s when the PV power raises its

power production from 600W to 1000W. At that time,

the voltage tends to vary but the ESS changes

quickly from discharging mode to charging one to

stabilize the system, and then keeps eliminating

fluctuations. At 0.55s, the radiation on PV cell is

increased and the PV power generation changes from

1000W to 1200W, and DC voltage goes up to 202V.

As the ESS is not able to consume all surplus power

but the VSDG responds immediately to decrease its

input power from 1200W to 800W and returns the DC

voltage back to 200V. At 0.75s, the SOC upper limit

was detected and the voltage starts to increase. The

system operates in range B until the 0.8
th
second

where the VSDG is turned off due to the voltage

variation that is about to pass the boundaries.

4. Conclusion

This paper presents an idea of regulating the DC

voltage in standalone DCMG. It proposes the way to

manage the solar source, ESS and VSDG source by

means of voltage ranges using a power management

scheme. The droop control method can be one of the

safest means to achieve the best performance of the

system. The proposed operation system is verified by

PSIM simulation results that shows a good

performance of the system.
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