• Title/Summary/Keyword: ESS : Energy Storage System

Search Result 407, Processing Time 0.025 seconds

The PCS system having the BESS function (BESS기능을 겸비한 PCS시스템 구성)

  • Kim, Sun-pil;Hwang, Jung-goo;Park, Sung-jun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.34-35
    • /
    • 2013
  • 최근 신재생 에너지원의 증가와 더불어 전력 산업 전반의 요구에 대해 에너지 저장시스템(ESS, Energy Storage System)에 대한 필요성이 높아지고 있다. 전력 수요의 급격한 증가는 전력계통의 교란이 증가하게 되어 전력품질의 문제를 야기 시키고, 이에 따라 송배전 설비의 증설에 교구 커지고 있는 상황이다. 이에 대한 적절한 대안으로 배터리를 이용한 에너지 저장 시스템(BESS, Battery Energy Storage System)이 대두되고 있는 상황이며, 특히 계통연계형 PCS에 BESS를 적용시킬시에 능동적인 부하 평준화 기능을 통해 송배전 설비투자 지연의 목적을 달성할 수 있는 장점을 가진다. 따라서 본 논문에서는 BESS기능을 겸비한 PCS 시스템 구성을 제안하고, 이에 대하여 기술한다.

  • PDF

Load Forecasting and ESS Scheduling Considering the Load Pattern of Building (부하 패턴을 고려한 건물의 전력수요예측 및 ESS 운용)

  • Hwang, Hye-Mi;Park, Jong-Bae;Lee, Sung-Hee;Roh, Jae Hyung;Park, Yong-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1486-1492
    • /
    • 2016
  • This study presents the electrical load forecasting and error correction method using a real building load pattern, and the way to manage the energy storage system with forecasting results for economical load operation. To make a unique pattern of target load, we performed the Hierarchical clustering that is one of the data mining techniques, defined load pattern(group) and forecasted the demand load according to the clustering result of electrical load through the previous study. In this paper, we propose the new reference demand for improving a predictive accuracy of load demand forecasting. In addition we study an error correction method for response of load events in demand load forecasting, and verify the effects of proposed correction method through EMS scheduling simulation with load forecasting correction.

Parallel Operation Control Method of Grid-connected Inverters with Seamless Transfer for Energy Storage System in Microgrid (마이크로그리드에서 에너지 저장시스템을 위한 무순단 절체 기능을 갖는 계통연계형 인버터의 병렬운전 제어기법)

  • Park, Sung-Youl;Kim, Joo-Ha;Jung, Ah-Jin;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2016
  • In the microgrid, inverters for energy storage system are generally constructed in a parallel structure because of capacity expandability, convenience of system maintenance, and reliability improvement. Parallel inverters are required to provide stable voltage to the critical load in PCC and to accurately share the current between each inverter. Furthermore, when islanding occurs, the inverters should change its operating mode from grid-connected mode to stand-alone mode. However, during clearing time and control mode change, the conventional control method has a negative impact on the critical load, that is, severe fluctuating voltage. In this study, a parallel operation control method is proposed. This method provides seamless mode transfer for the entire transition period, including clearing time and control mode change, and has accurate current sharing between each inverter. The proposed control method is validated through simulation and experiment.

A Study on Reliability Test of Super-Capacitor for Electric Railway Regenerative Energy Storage System (전동차 회생에너지 저장 시스템용 슈퍼커패시터의 신뢰성시험에 관한 연구)

  • Lee, Sang-Min;Kim, Nam
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.238-244
    • /
    • 2016
  • Purpose: Domestic electric railway Regenerative Energy Storage System seriously affects the maintenance cost of the total operating expenses of nearly 60% of the total LCC (Life Cycle Cost) due to high dependence on foreign Leading company. Therefore by developing the system, it is important to lower the maintenance cost in the domestic supply. This study about the capacitor Reliability test and the purpose of this study is development electric railway Regenerative Energy Storage System. Methods: In case of, having a close relation between the temperature and the reaction rate, Accelerated Model was known that according to Arrhenius' law of chemical activity. If you apply this formula in using allowable temperature range of the capacitor can induce the Arrhenius empirical formula used in much Manufacture Fields. We evaluate the capacitors Leading company through the Arrhenius model. in order to providing a base for the localization of Ultra Capacitor. Conclusion: In this paper, we conducted a reliability test. And it was performed by the accelerated life test and Cycle Test with temperature and C-rate. and then MTBF and B10 life are estimated by analyzing the accelerated life test result. This is thought to need detailed study applying complex stress than about whether it matches the actual behavior in electric railway.

A Performance Evaluation of a Heat Dissipation Design for a Lithium-Ion Energy Storage System Using Infrared Thermal Imaging (적외선 열화상을 활용한 리튬 이온 ESS의 방열설계 성능평가에 관한 연구)

  • Kim, Eun-Ji;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.105-110
    • /
    • 2020
  • The global battery market is rapidly growing due to the development of vehicles(EV) and wireless electronic products. In particular logistics robots, which hielp to produce EVs, have attracted much interest in research in Korea Because logistics sites and factories operate continuously for 24 hours, the technology that can dramatically increase the operation time of the logistics equipment is rapidly developing, and various high-level technologies are required for the batteries used in. for example, logistics robots. These required technologies include those that enable rapid battery charging as well wireless charging to charge batteries while moving. The development of these technologies, however, result in increasing explosions and topical accidents involving rapid charging batteries These accidents due to the thermal shock caused by the heat generated during the charging of the battery cell. In this study, a performance evaluation of a heat dissipation design using infrared thermal imaging was performed on an energy storage systrm(Ess) applied with an internal heat conduction cooling method using a heating plate.

Improving Regenerative Break Energy Efficiency and Voltage Regulation Capability of DC Electric Railway by Coordination of VSC and EDLC (전압형 컨버터와 EDLC의 협조 제어에 의한 직류전기철도 회생에너지 이용률 및 전압 제어 능력 향상)

  • Jeon, Go-Woon;Yoo, Hyeong-Jun;Park, Jae-Sae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.176-181
    • /
    • 2015
  • In the DC electric railway system, the effective use of regenerative break energy is an important issue. Since regenerative break energy causes voltage rise or drop in the system, it should be also solved effectively. To solve the problems, applying electric double layer capacitor (EDLC) or voltage source converter (VSC) to the DC electric railway system has been studying. In this paper, the coordination of EDLC and VSC is proposed to solve the problem effectively with its coordinated control algorithm. The proposed method is tested to show its feasibility using Matlab/Simulink.

A Study on System Retrofit of Complex Energy System (복합에너지시스템의 성능개선에 관한 연구)

  • Choi, Jung-Hun;Moon, Chae-Joo;Chang, Young-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • The application of renewable energies such as wind and solar has become an inevitable choice for many countries in order to achieve the reduction of greenhouse gases and healthy economic development. However, due to the intermittent characteristics of renewable energy, the issue with integrating a larger proportion of renewable energy into the grid becomes more prominent. A complex energy system, usually consists of two or more renewable energy sources used together to provide increased system efficiency as well as greater balance in energy supply. Compared with the power system, control and optimization of the complex energy system become more difficult in terms of modeling, operation, and planning. The main purpose of the complex energy system retrofit for samado island with microgrid system is to coordinate the operation with various distributed energy resources, energy storage systems, and power grids to ensure its reliability, while reducing the operating costs and achieving the optimal economic benefits. This paper suggests the improved complex energy system of samado island with optimal microgrid system. The results of test operation show about 12% lower SOC variation band of ESS, elimination of operation limit in PV and reduction of operation time in diesel generator.

Constant Power Tracking Algorithm of Photovoltaic Generation System using dispersed ESS (분산형 ESS를 이용한 태양광 발전의 일정 출력 추종 알고리즘)

  • Ryu, Kyung;Kim, Jun-Mo;Lee, Jeong;Eom, Tae-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.182-183
    • /
    • 2019
  • 본 논문에서는 외부 환경에 따라 변화하는 태양광 발전의 간헐적 특성을 보완하기 위하여 ESS(Energy Storage System)를 연계하는 시스템을 구현하였다. 또한 태양광 발전의 출력에 따라 태양광 발전과 연계된 ESS를 이용하여 야간에 저장된 에너지를 방전하여 태양광 발전 출력을 일정하게 유지하는 태양광 발전의 일정 출력 추종 알고리즘을 제안하여, 태양광 발전의 간헐적 특성을 보완하였다.

  • PDF

Development of the High Power Battery Charging System for Portable Energy Banks (이동식 에너지 뱅크용 대용량 배터리 충전 시스템의 개발)

  • Kim, Soo-Yeon;Kim, Dong-Ok;Lee, Jung-Hwan;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.491-499
    • /
    • 2021
  • Batteries are widely used for energy storage, such as ESS(Energy Storage System), electric vehicles, electric aircraft, and electric powered ships. Among them, a submarine uses a high power battery for an energy storage. When the battery of a submarine is discharged, a diesel generator generates AC power, and then AC/DC power converter change AC power to DC power for charging the battery. Therefore, in order to lower the current capacity of the diesel generator, it is necessary to use an AC/DC converter with a high input power factor. And, a power converter with a large power capacity must have high stability because it can lead to a major accident when a failure occurs. However, the control algorithm using the traditional PI controller is difficult to satisfy stability and dynamic characteristics. In this paper, we design the high power AC/DC converter with high input power factor for battery charging systems. And, we propose a stable control algorithm. The validity of the proposed method is verified through simulation and experiments.

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.