• Title/Summary/Keyword: ERK activation

Search Result 690, Processing Time 0.029 seconds

Melanin Synthesis Inhibitory Effect of Eriobotryae Folium Extracts & Eriobotryae Folium and Phreatic Water Mixture

  • Choi, Jae-Song;Park, Jung-Hwan;Koh, Young-Mee;Kwak, Jin-young;Ahn, Taek-Won
    • The Journal of Korean Medicine
    • /
    • v.38 no.4
    • /
    • pp.62-81
    • /
    • 2017
  • Objectives: As interests in the beauty of skin is growing continuously, more people are focusing on white and clean skin. Melanin is the major factor that determines skin color. The abnormal concentration of melanin causes various skin diseases such as vitiligo, freckles, and melasma. This study investigated the inhibitory effect of Eriobotryae Folium extracts (EF) with phreatic water (PW) on the melanin synthesis. Methods: The effect of EF on melanin synthesis was evaluated by using mouse melanoma cells (B16F10). To define the mechanisms, real-time PCR and western blot were used. We also evaluated the inhibitory effects of EF and PW on melanin synthesis by using HRM-2 melanin-possessing hairless mice. After UVB irradiation, melanin differences between the skin parts that were treated and untreated with EF and PW. Levels of mRNA were measured by real-time quantitative PCR and histological analysis of the dorsal skin was conducted by hematoxylin and eosin staining. Results: EF inhibited various mechanisms of melanogenesis, and the effect was increased when combined with PW. In vitro experiments have shown that EF inhibited the expressions of tyrosinase related protein-1 (TRP-1) mRNA, tyrosinase mRNA, microphthalmia-associated transcription factor (MITF) mRNA and the tyrosinase inhibitory activation, but it stimulated the extracellular regulated kinase (ERK) mRNA expression. In vivo experiments have shown that EF prevented melanogenesis in the mice dorsal skin and inhibited TRP-1 mRNA expression. Also these effects were increased when combined with PW. Conclusions: EF and PW might be a new and effective treatment for whitening and treating pigmentation of skin.

The Aqueous Extract of Radio-Resistant Deinococcus actinosclerus BM2T Suppresses Lipopolysaccharide-Mediated Inflammation in RAW264.7 Cells

  • Kim, Myung Kyum;Jang, Seon-A;Namkoong, Seung;Lee, Jin Woo;Park, Yuna;Kim, Sung Hyeok;Lee, Sung Ryul;Sohn, Eun-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.583-590
    • /
    • 2020
  • Deinococcus actinosclerus BM2T (GenBank: KT448814) is a radio-resistant bacterium that is newly isolated from the soil of a rocky hillside in Seoul. As an extremophile, D. actinosclerus BM2T may possess anti-inflammatory properties that may be beneficial to human health. In this study, we evaluated the anti-inflammatory effects of BM2U, an aqueous extract of D. actinosclerus BM2T, on lipopolysaccharide (LPS)-mediated inflammatory responses in RAW264.7 macrophage cells. BM2U showed antioxidant capacity, as determined by the DPPH radical scavenging (IC50 = 349.3 ㎍/ml) and ORAC (IC50 = 50.24 ㎍/ml) assays. At 20 ㎍/ml, BM2U induced a significant increase in heme oxygenase-1 (HO-1) expression (p < 0.05). BM2U treatment (0.2-20 ㎍/ml) significantly suppressed LPS-induced increase in the mRNA expression of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 (p < 0.05). BM2U treatment also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. BM2U treatment also inhibited the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs): JNK, ERK, and p-38 (p < 0.05). Collectively, BM2U exhibited anti-inflammatory potential that can be exploited in attenuating inflammatory responses.

Suppression of Inflammation, Osteoclastogenesis and Bone Loss by PZRAS Extract

  • Li, Liang;Park, Young-Ran;Shrestha, Saroj Kumar;Cho, Hyoung-Kwon;Soh, Yunjo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1543-1551
    • /
    • 2020
  • Panax ginseng has a wide range of activities including a neuroprotective effect, skin protective effects, enhanced DNA repairing, anti-diabetic activity, and protective effects against vascular inflammation. In the present study, we sought to discover the inhibitory effects of a mixture of natural products containing Panax ginseng, Ziziphus jujube, Rubi fructus, Artemisiae asiaticae and Scutellaria baicalensis (PZRAS) on osteoclastogenesis and bone remodeling, as neither the effects of a mixture containing Panax ginseng extract, nor its molecular mechanism on bone inflammation, have been clarified yet. PZRAS upregulated the levels of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH-R) and glutathione peroxidase (GSH-Px) and reduced malondialdehyde (MDA) in LPS-treated RAW264.7 cells. Moreover, treatment with PZRAS decreased the production of IL-1β and TNF-α. PZRAS also inhibited osteoclast differentiation through inhibiting osteoclastspecific genes like MMP-2, 9, cathepsin K, and TRAP in RANKL-treated RAW264.7 cells. Additionally, PZRAS has inhibitory functions on the RANKL-stimulated activation of ERK and JNK, which lead to a decrease in the expression of NFATc1 and c-Fos. In an in vivo study, bone resorption induced by LPS was recovered by treatment with PZRAS in bone volume per tissue volume (BV/TV) compared to control. Furthermore, the ratio of eroded bone surface of femurs was significantly increased in LPS-treated mice compared to vehicle group, but this ratio was significantly reversed in PZRAS-treated mice. These results suggest that PZRAS could prevent or treat disorders with abnormal bone loss.

Acacia Honey Exerts Anti-Inflammatory Activity through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.97-97
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B-{\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

  • PDF

Effect of Water Extracts of Cuscuta Japonica Chois in RANKL-induced Osteoclast Differentiation (파골세포 분화에서 토사자 물 추출물의 효과)

  • Cho, Hae-Joong;Choi, Min-Kyu;Kim, Jeong-Joong;Le, Yan;Song, Jeong-Hoon;Lee, Myeung-Su;Lee, Chang-Hoon;Jang, Sung-Jo;Kwak, Han-Bok;Oh, Jae-Min
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.860-865
    • /
    • 2009
  • Osteoclasts are bone-resorbing multinucleated cells derived from the monocyte/macrophage lineage. The differentiation of osteoclasts are regulated by osteoblastic cells expressed RANKL, which is the most critical molecule for osteoclast differentiation. In this study, we found that water extracts of cuscuta inhibited RANKL-mediated osteoclast differentiation by direct action on bone marrow macrophages (BMMs) without cytotoxicity. In BMMs, water extracts of cuscuta inhibited the mRNA expression of c-Fos, NFATc1, TRAP, and OSCAR. Also, the protein expression of c-Fos and NFATc1 was inhibited by water extracts of cuscuta treatement. Water extracts of cuscuta inhibited the phosphorylation of p38, ERK, and JNK in BMMs treated with RANKL. However, water extracts of cuscuta did not inhibit RANKL-induced I-${\kappa}B$ activation. Water extract of cuscuta failed to inhibit bone resorption by osteoclasts cultured on hydroxyapatite plates. These results suggest that cuscuta may be a promising drug for use against bone disorders such as osteoporosis and rheumatoid arthritis.

Inhibitory Effect of Extract of Euonymus alatus (Thunb.) Sieb. on the Production of Inflammatory Cytokines (귀전우(鬼箭羽) 추출물의 염증성세포활성물질 억제효과)

  • Kim, Dae-Hyeon;Kim, Byung-Jin;Park, Kyung-Bae;Lee, Ju-Sung;Sung, Kang-Keyng;Park, Sung-Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.368-373
    • /
    • 2009
  • The purpose of this study was to investigate the anti-inflammatory effects of water extract from Euonymus alatus (Thunb.) Sieb. (EAS) on the RAW 264.7 cells. To evaluate of anti-inflammatory of EAS, we examined the cytokine productions on lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms using Western blot. EAS reduced LPS-induced production of nitric oxide (NO), interleukin (IL)-1b, IL-6, IL-10 and tumor necrosis factor-a (TNF-a) in RAW 264.7 cells. EAS inhibited the activation of mitogen-activated protein kinases (MAPKs) such as p38, extracelluar signal-regulated kinase (ERK 1/2) and c-Jun NH2-terminal kinase (JNK) but not of inhibitory kappa B a (Ik-Ba) degradation in the LPS-stimulated RAW 264.7 cells. In conclusion, EAS down-regulated LPS-induced NO and cytokines production, which could provide a clinical basis.

Gene Expression Profile and Its Interpretation in Squamous Cell Lung Cancer

  • Park, Dong-Yoon;Kim, Jung-Min;Kim, Ja-Eun;Yoo, Chang-Hyuk;Lee, Han-Yong;Song, Ji-Young;Hwang, Sang-Joon;Yoo, Jae-Cheal;Kim, Sung-Han;Park, Jong-Ho;Yoon, Jeong-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.273-278
    • /
    • 2006
  • 95 squamous cell lung carcinoma samples (normal tissue: 40 samples, tumor: 55 samples) were analyzed with 8 K cDNA microarray. 1-way ANOVA test was employed to select differentially expressed genes in tumor with FDR<0.01. Among the selected 1,655 genes, final 212 genes were chosen according to the expression fold change and used for following analysis. The expression of up-regulated 64 genes was verified with Reverse Transcription PCR and 10 genes were identified as candidates for SCC markers. In our opinion, those candidates can be exploited as diagnostic or therapeutic purposes. Gene Ontology (GO) based analysis was performed using those 212 genes, and following categories were revealed as significant biological processes: Immune response (GO: 0006955), antigen processing (GO: 0030333), inflammatory response (GO: 0006954), Cell adhesion (GO: 0007155), and Epidermis differentiation (GO: 0008544). Gene set enrichment analysis (GSEA) also carried out on overall gene expression profile with 522 functional gene sets. Glycolysis, cell cycle, K-ras and amino acid biosynthesis related gene sets were most distinguished. These results are consistent with the known characteristics of SCC and may be interconnected to rapid cell proliferation. However, the unexpected results from ERK activation in squamous cell carcinoma gripped our attention, and further studies are under progress.

Inhibitory Action of Tsunokaori Tangor Peel on the Lipopolysaccharide-Induced Inflammatory Response in RAW 264.7 Macrophage Cells

  • Choi, Soo-Youn;Hwang, Joon-Ho;Ko, Hee-Chul;Park, Soo-Young;Kim, Gi-Ok;Kim, Duck-Hee;Chang, Ih-Seop;Kwon, H.-Moo;Kim, Se-Jae
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.270-276
    • /
    • 2006
  • We evaluated the effects of extracts of Tsunokaori tangor peel on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin $E_2\;(PGE_2)$ in RAW 264.7 cells. The ethyl acetate fraction of Tsunokaori tangor peel (EA-TTP) markedly inhibited the production of NO and $PGE_2$ in LPS-stimulated RAW 264.7 cells. Consistent with these findings, the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins were down-regulated in a dose-dependent manner. Additionally, EA-TTP decreased the expression iNOS mRNA but not COX-2 mRNA. To determine the upstream signaling mechanism for the down-regulation of LPS-induced iNOS expression, we investigated the effect of EA-TTP on the degradation and re-synthesis of $I{\kappa}B{\alpha}$. EA-TTP dose-dependently delayed $I{\kappa}B{\alpha}$ degradation and increased $I{\kappa}B{\alpha}$ re-appearance following degradation, suggesting this as the mechanism by which EA-TTP suppressed iNOS gene expression. The EA-TTP also dose-dependently reduced the expression of the cellular stress-response protein heme oxygenase-1, and inhibited the LPS-induced sustained activation of extracellar signal-regulated kinase (ERK).

Signal Transduction of the Protective Effect of Insulin Like Growth Factor-1 on Adriamycin-Induced Apoptosis in Cardiac Muscle Cells

  • Chae, Han-Jung;Kim, Hyung-Ryong;Bae, Jee-hyeon;Chae, Soo-Uk;Ha, Ki-Chan;Chae, Soo-Wan
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.324-333
    • /
    • 2004
  • To determine whether Insulin-like growth factor (IGF-I) treatment represents a potential means of enhancing the survival of cardiac muscle cells from adriamycin (ADR)-induced cell death, the present study examined the ability of IGF-I to prevent cell death. The study was performed utilising the embryonic, rat, cardiac muscle cell line, H9C2. Incubating cardiac muscle cells in the presence of adriamycin increased cell death, as determined by MTT assay and annexin V-positive cell number. The addition of 100 ng/mL IGF-I, in the presence of adriamycin, decreased apoptosis. The effect of IGF-I on phosphorylation of PI, a substrate of phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase B (AKT), was also examined in H9C2 cardiac muscle cells. IGF-I increased the phosphorylation of ERK 1 and 2 and $PKC{\;}{\zeta}{\;}kinase$. The use of inhibitors of PI 3-kinase (LY 294002), in the cell death assay, demonstrated partial abrogation of the protective effect of IGF-I. The MEK1 inhibitor-PD098059 and the PKC inhibitor-chelerythrine exhibited no effect on IGF-1-induced cell protection. In the regulatory subunit of PI3K-p85- dominant, negative plasmid-transfected cells, the IGF-1-induced protective effect was reversed. This data demonstrates that IGF-I protects cardiac muscle cells from ADR-induced cell death. Although IGF-I activates several signaling pathways that contribute to its protective effect in other cell types, only activation of PI 3-kinase contributes to this effect in H9C2 cardiac muscle cells.

Therapeutic Potential of Jeongjihwan for the Prevention and Treatment of Amnesia (정지환(定志丸)의 기억 및 인지기능 향상에 대한 효능 연구)

  • Jung, Tae-Young;Jeong, Won-Choon;Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.37-47
    • /
    • 2011
  • This study was aimed to investigate the memory enhancing effect of Jeongjihwan against scopolamine-induced amnesia in C57BL/6 mice. To determine the effect of Jeongjihwan on the memory and cognitive function, we have injected scopolamine (1 mg/kg, i.p.) into C57BL/6 mice 30 min before beginning of behavior tests. We have conducted Y-maze, Morris water-maze, passive avoidance and fear conditioning tests to compare learning and memory functions. Scopolamine-induced behavior changes of memory impairment were significantly restored by oral administration of Jeongjihwan (100 or 200 mg/kg/day). To elucidate the molecular mechanism underlying the memory enhancing effect of Jeongjihwan, we have examined the antioxidant defense system and neurotrophic factors. Jeongjihwan treatment attenuated intracellular accumulation of reactive oxygen species and up-regulated mRNA and protein expression of antioxidant enzymes as assessed by RT-PCR and western blot analysis, respectively. Jeongjihwan also increased protein levels of brain-derived neurotrophic factor (BDNF) compared with those in the scopolamine-treated group. Furthermore, as an upstream regulator, the activation of cAMP response element-binding protein (CREB) via phosphorylation was assessed by Western blot analysis. Jeongjihwan elevated the phosphorylation of CREB (p-CREB), which seemed to be mediated partly by extracellular signal-regulated kinase1/2 (ERK1/2) and protein kinase B/Akt. These findings suggest that Jeongjihwan may have preventive and therapeutic potential in the management of amnesia.