DOI QR코드

DOI QR Code

The Aqueous Extract of Radio-Resistant Deinococcus actinosclerus BM2T Suppresses Lipopolysaccharide-Mediated Inflammation in RAW264.7 Cells

  • Kim, Myung Kyum (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Jang, Seon-A (Herbal Medicine Research Division, Korea Institute of Oriental Medicine) ;
  • Namkoong, Seung (College of Health Sciences, Kangwon National University) ;
  • Lee, Jin Woo (College of Health Sciences, Kangwon National University) ;
  • Park, Yuna (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Kim, Sung Hyeok (College of Health Sciences, Kangwon National University) ;
  • Lee, Sung Ryul (Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University) ;
  • Sohn, Eun-Hwa (College of Health Sciences, Kangwon National University)
  • Received : 2019.11.04
  • Accepted : 2019.12.14
  • Published : 2020.04.28

Abstract

Deinococcus actinosclerus BM2T (GenBank: KT448814) is a radio-resistant bacterium that is newly isolated from the soil of a rocky hillside in Seoul. As an extremophile, D. actinosclerus BM2T may possess anti-inflammatory properties that may be beneficial to human health. In this study, we evaluated the anti-inflammatory effects of BM2U, an aqueous extract of D. actinosclerus BM2T, on lipopolysaccharide (LPS)-mediated inflammatory responses in RAW264.7 macrophage cells. BM2U showed antioxidant capacity, as determined by the DPPH radical scavenging (IC50 = 349.3 ㎍/ml) and ORAC (IC50 = 50.24 ㎍/ml) assays. At 20 ㎍/ml, BM2U induced a significant increase in heme oxygenase-1 (HO-1) expression (p < 0.05). BM2U treatment (0.2-20 ㎍/ml) significantly suppressed LPS-induced increase in the mRNA expression of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 (p < 0.05). BM2U treatment also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. BM2U treatment also inhibited the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs): JNK, ERK, and p-38 (p < 0.05). Collectively, BM2U exhibited anti-inflammatory potential that can be exploited in attenuating inflammatory responses.

Keywords

References

  1. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. 2007. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-$1{\beta}$ generation. Clin. Exp. Immunol. 147: 227-235. https://doi.org/10.1111/j.1365-2249.2006.03261.x
  2. Chen GY, Nunez G. 2010. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10: 826-837. https://doi.org/10.1038/nri2873
  3. Seki E, Schwabe RF. 2015. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61: 1066-1079. https://doi.org/10.1002/hep.27332
  4. Ben Salem C, Slim R, Fathallah N. 2015. Fibrosis--A common pPathway to organ injury and failure. N. Engl. J. Med. 373: 95. https://doi.org/10.1056/NEJMc1504848
  5. Hunter P. 2012. The inflammation theory of disease. The growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment. EMBO Rep. 13: 968-970. https://doi.org/10.1038/embor.2012.142
  6. Shin EM, Zhou HY, Guo LY, Kim JA, Lee SH, Merfort I, et al. 2008. Anti-inflammatory effects of glycyrol isolated from Glycyrrhiza uralensis in LPS-stimulated RAW264.7 macrophages. Int. Immunopharmacol. 8: 1524-1532. https://doi.org/10.1016/j.intimp.2008.06.008
  7. Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13: 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  8. Yang Z, Ming X-F. 2014. Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front. Immunol. 5: 533-533.
  9. Singh OV, Gabani P. 2011. Extremophiles: radiation resistance microbial reserves and therapeutic implications. J. Appl. Microbiol. 110: 851-861. https://doi.org/10.1111/j.1365-2672.2011.04971.x
  10. Gabani P, Singh OV. 2013. Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl. Microbiol. Biotechnol. 97: 993-1004. https://doi.org/10.1007/s00253-012-4642-7
  11. Podar M, Reysenbach AL. 2006. New opportunities revealed by biotechnological explorations of extremophiles. Curr. Opin. Biotechnol. 17: 250-255. https://doi.org/10.1016/j.copbio.2006.05.002
  12. Llewellyn CA, Airs RL. 2010. Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar. Drugs. 8: 1273-1291. https://doi.org/10.3390/md8041273
  13. Soule T, Garcia-Pichel F, Stout V. 2009. Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UVA radiation. J. Bacteriol. 191: 4639-4646. https://doi.org/10.1128/JB.00134-09
  14. Sun Joo E, Jin Lee J, Kang M-S, Lim S, Jeong S-w, Bit Kim E, et al. 2016. Deinococcus actinosclerus sp. nov., a novel bacterium isolated from soil of a rocky hillside. Int. J. Syst. Evol. Microbiol. 66: 1003-1008. https://doi.org/10.1099/ijsem.0.000825
  15. Gabani P, Singh OV. 2013. Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl. Microbiol. Biotechnol. 97: 993-1004. https://doi.org/10.1007/s00253-012-4642-7
  16. Naito Y, Takagi T, Higashimura Y. 2014. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch. Biochem. Biophys. 564: 83-88. https://doi.org/10.1016/j.abb.2014.09.005
  17. Maines MD. 2005. The heme oxygenase system: update 2005. Antioxid. Redox Signal. 7: 1761-1766. https://doi.org/10.1089/ars.2005.7.1761
  18. Do H, Kang NS, Pyo S, Billiar TR, Sohn EH. 2010. Differential regulation by fucoidan of IFN-gamma-induced NO production in glial cells and macrophages. J. Cell Biochem. 111: 1337-1345. https://doi.org/10.1002/jcb.22860
  19. Cho JH, Kwon JE, Cho Y, Kim I, Kang SC. 2015. Anti-inflammatory effect of Angelica gigas via heme oxygenase (HO)-1 expression. Nutrients 7: 4862-4874. https://doi.org/10.3390/nu7064862
  20. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  21. Sweet MJ, Hume DA. 1996. Endotoxin signal transduction in macrophages. J. Leukoc. Biol. 60: 8-26. https://doi.org/10.1002/jlb.60.1.8
  22. Aswad M, Rayan M, Abu-Lafi S, Falah M, Raiyn J, Abdallah Z, et al. 2018. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity. Inflamm. Res. 67: 67-75. https://doi.org/10.1007/s00011-017-1096-5
  23. Basso PJ, Camara NOS, Sales-Campos H. 2019. Microbial-based therapies in the treatment of inflammatory bowel disease - An overview of human studies. Front. Pharmacol. 9: 1571. https://doi.org/10.3389/fphar.2018.01571
  24. Chen Y, Ji N, Pan S, Zhang Z, Wang R, Qiu Y, et al. 2017. Roburic acid suppresses NO and IL-6 production via targeting NF-kappaB and MAPK pathway in RAW264.7 cells. Inflammation 40: 1959-1966. https://doi.org/10.1007/s10753-017-0636-z
  25. Koo HJ, Yoon WJ, Sohn EH, Ham YM, Jang SA, Kwon JE, et al. 2014. The analgesic and anti-inflammatory effects of Litsea japonica fruit are mediated via suppression of NF-kappaB and JNK/p38 MAPK activation. Int. Immunopharmacol. 22: 84-97. https://doi.org/10.1016/j.intimp.2014.06.007
  26. Zhang C, Li C, Jia X, Wang K, Tu Y, Wang R, et al. 2019. In vitro and in vivo anti-inflammatory effects of polyphyllin VII through downregulating MAPK and NF-kappaB pathways. Molecules 24(5): 875. https://doi.org/10.3390/molecules24050875
  27. Koh YC, Yang G, Lai CS, Weerawatanakorn M, Pan MH. 2018. Chemopreventive effects of phytochemicals and medicines on M1/M2 polarized macrophage role in inflammation-related diseases. Int. J. Mol. Sci. 19(8): 2208. https://doi.org/10.3390/ijms19082208
  28. Luo D, Guo Y, Cheng Y, Zhao J, Wang Y, Rong J. 2017. Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-kappaB pathways. Aging (Albany NY) 9: 2069-2082. https://doi.org/10.18632/aging.101302
  29. Luo JF, Shen XY, Lio CK, Dai Y, Cheng CS, Liu JX, et al. 2018. Activation of Nrf2/HO-1 pathway by nardochinoid C inhibits inflammation and oxidative stress in Lipopolysaccharide-stimulated macrophages. Front Pharmacol. 9: 911. https://doi.org/10.3389/fphar.2018.00911
  30. Waxman K. 1996. Shock: ischemia, reperfusion, and inflammation. New Horiz. 4: 153-160.
  31. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112: 1821-1830. https://doi.org/10.1172/JCI200319451
  32. Ryter SW, Alam J, Choi AM. 2006. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86: 583-650. https://doi.org/10.1152/physrev.00011.2005
  33. Senger DR, Li D, Jaminet S-C, Cao S. 2016. Activation of the Nrf2 cell defense pathway by ancient foods: disease prevention by important molecules and microbes lost from the modern western diet. PLoS One 11: e0148042. https://doi.org/10.1371/journal.pone.0148042