Signal Transduction of the Protective Effect of Insulin Like Growth Factor-1 on Adriamycin-Induced Apoptosis in Cardiac Muscle Cells

  • Chae, Han-Jung (Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University) ;
  • Kim, Hyung-Ryong (Department of Dental Pharmacology and Nano-Science & Technology Research institute, School of Dentistry, Wonkwang University) ;
  • Bae, Jee-hyeon (Department of Molecular Biology, Stanford University) ;
  • Chae, Soo-Uk (Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University) ;
  • Ha, Ki-Chan (Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University) ;
  • Chae, Soo-Wan (Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University)
  • Published : 2004.03.01

Abstract

To determine whether Insulin-like growth factor (IGF-I) treatment represents a potential means of enhancing the survival of cardiac muscle cells from adriamycin (ADR)-induced cell death, the present study examined the ability of IGF-I to prevent cell death. The study was performed utilising the embryonic, rat, cardiac muscle cell line, H9C2. Incubating cardiac muscle cells in the presence of adriamycin increased cell death, as determined by MTT assay and annexin V-positive cell number. The addition of 100 ng/mL IGF-I, in the presence of adriamycin, decreased apoptosis. The effect of IGF-I on phosphorylation of PI, a substrate of phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase B (AKT), was also examined in H9C2 cardiac muscle cells. IGF-I increased the phosphorylation of ERK 1 and 2 and $PKC{\;}{\zeta}{\;}kinase$. The use of inhibitors of PI 3-kinase (LY 294002), in the cell death assay, demonstrated partial abrogation of the protective effect of IGF-I. The MEK1 inhibitor-PD098059 and the PKC inhibitor-chelerythrine exhibited no effect on IGF-1-induced cell protection. In the regulatory subunit of PI3K-p85- dominant, negative plasmid-transfected cells, the IGF-1-induced protective effect was reversed. This data demonstrates that IGF-I protects cardiac muscle cells from ADR-induced cell death. Although IGF-I activates several signaling pathways that contribute to its protective effect in other cell types, only activation of PI 3-kinase contributes to this effect in H9C2 cardiac muscle cells.

Keywords

References

  1. Andoh, T., Lee, S. Y., and Chineh, C. C., Preconditioning regulation of bcl-2 and p66shc by human NOS1 enhances tolerance to oxidative stress. FASEB J., 14, 2144-2146 (2000)
  2. Andrieu-Abadie, N., Jaffrezou, J. P., Hatem,S., Laurent, G., Levade, T., and Mercadier, J. J., L-Carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: role of inhibition of ceramide generation. FASEB J., 13, 1501-1510(1999)
  3. Li, A. E., Ito, H., Rovira, I. I., Kim, K. S., Takeda, K., Yu, Z. Y., Ferrans, V. J., and Finkel, T., A role for reactive oxygen species in endothelial cell anoikis. Circ. Res., 85, 304-310 (1999) https://doi.org/10.1161/01.RES.85.4.304
  4. Cain, K., Brown,D. G., Langlis, C., and Cohen, G. M., Caspase activation involves the formation of the apotosome, a large (approximately 700 kDa) caspase-activating complex. J. Biol. Chem., 274, 22686-22692 (1999) https://doi.org/10.1074/jbc.274.32.22686
  5. Chae, H. J., Chae, S. W., Kang, J. S., Bang, B. G., Cho, S. B., Park,R. K., So, H. S., Kim,Y. K., Kim, H. M., and Kim, H. R., Dexamethasone suppresses tumor necrosis factor-alpha-induced apoptosis in osteoblast: possible role for ceramide. Endocrinology, 141, 2904-2913 (2000) https://doi.org/10.1210/en.141.8.2904
  6. Chae, H. J., Chae, S. W., Kang, J. S., Bang, B. G., Han, J. I., Moon, S. R., Park, R, So, H. S., Jee, K. S., Kim, H. M., and Kim, H. R., Effectof ionizing radiation on the differentiation of ROS 17/2.8 osteoblasts through free radicals. J. Radiat. Res., 40, 323-335 (199z9) https://doi.org/10.1269/jrr.40.323
  7. Chesley, A., Lundberg, M. S., Asai, T., Xiao, R. P., Ohtani, S., Lakatta, E. G., and Crow, M. T., The ${\beta}_{2}$-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through $G_{i}$-dependent couplingto phosphatidylinositol 3'-kinase. Circ. Res., 87, 1172-1179 (2000) https://doi.org/10.1161/01.RES.87.12.1172
  8. Crompton, M., The mitochondrial permeability transition pore and its role in cell death. Biochem. J., 341, 233-249 (1999) https://doi.org/10.1042/0264-6021:3410233
  9. Doroshow, J. H., Doxorubicin-induced cardiac toxicity. N. Engl. J. Med., 324, 843-845 (1991) https://doi.org/10.1056/NEJM199103213241210
  10. Ettinghausen, S. E., Bonow, R. O., Palmeri, S. T., Seipp, C. A., Steinberg, S. M., White, D. E., and Rosenberg, S. A., Prospective study of cardiomyopathy induced by adjuvant doxorubicin therapy in patients with soft-tissue sarcomas. Arch. Surg., 121, 1445-1451 (1986) https://doi.org/10.1001/archsurg.1986.01400120095016
  11. Gross,A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjment-Bromege, H., Tempst, P., and Korsmeyer, S. J., Caspase cleaved BID targets mitochondria and is required for cytochrome d release while Bcl-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem., 274,1156-1163 (1999) https://doi.org/10.1074/jbc.274.2.1156
  12. Hitchcock-Bryan, S., Gelber, R. D., Cassady, J. R., and Sallan, S. E., The impact of induction anthracycline on long-term failure-free survival in child-free survival in childhood acute lymphoblastic leukemia. Med. Pedioatr. Oncol., 14, 211-215 (1986) https://doi.org/10.1002/mpo.2950140405
  13. Kang, Y. J., Chen, Y., and Epstein, P. N., Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J. Biol. Chem., 271, 12610-12616 (1996) https://doi.org/10.1074/jbc.271.21.12610
  14. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D., The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 275, 1132-1136 (1996) https://doi.org/10.1126/science.275.5303.1132
  15. Li, T. and Singal, P. K., Adriamycin-induced early changes in myocardial antioxidant enzymes and the modulation by probucol. Circulation, 102, 2105-2110 (2000) https://doi.org/10.1161/01.CIR.102.17.2105
  16. Linassier, C., MacDougall, L. K., Domin, J., and Waterfield, M. D., Molecular cloning and biochemical characterization of a Drosophila phosphatidylinositol-specific phosphoinositide 3-kinase. Biochem. J., 321, 849-856 (1997)
  17. Maulik, N., Engelman, R. M., Rousou, J.A., Flack, J. E., Deaton, D., and Das, D. K., Ischemic preconditioning reduces apoptosis by upregulating anti-death gene BcI-2. Circulation, 100 (19 Suppl), 369-375 (1999) https://doi.org/10.1161/01.CIR.100.4.369
  18. Nowak, D., Pierscinski, G., and Drzewoski, J., Ambroxol inhibits doxorubicin-induced lipid peroxidation in mice. Free Radic. Biol. Med., 19, 659-663 (1995) https://doi.org/10.1016/0891-5849(95)00028-V
  19. Okamoto, M., Hayashi, T., Kono, S., Inoue, G., Kubota, M., Okamoto, M., Kuzuya, H., and Imura, H., Specific activity of phosphatidylinositol 3-kinase is increased by insulin stimulation. Biochem. J., 290, 327-333 (1993)
  20. Perry, D. K., Smyth, M. J., Steinicke, H. R., Salvesen, G. S., Duriez, P., Poirier, G. G., and Hannun, Y. A., Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J. Bioi. Chem., 272, 18530-18533 (1997) https://doi.org/10.1074/jbc.272.30.18530
  21. Rechard. L., Sundararajah, T., Marsela, D. R., Maryely, D. L., and Prasad. D., Partial ATP depletion induces Fas- and caspase-mediated apoptosis in MDCK cells. Am. J. Physiol., 276, F837-846 (1999)
  22. Sasakl, H., Akamatsu, H., and Horio, T., Effects of a single exposure to UVB radiation on the activities and protein level of copper-zinc and manganese superoxide dismutase in cultured human keratinocytes. Photochem. Photobiol., 65, 707-713 (1997) https://doi.org/10.1111/j.1751-1097.1997.tb01914.x
  23. Schlumberqer, M., Parmentier, C., Delisle. M. J., Couette, J. E., Droz, J. P., and Sarrazin, D., Combination therapy for nanplastic giant cell thyroid carcinoma. Cancer, 67, 564-566 (1991) https://doi.org/10.1002/1097-0142(19910201)67:3<564::AID-CNCR2820670306>3.0.CO;2-E
  24. Sonoda, Y., Yang, Y. C., Wong, G. G., Clark, S. C., and Ogawa, M., Erythroid burst-promoting activity of purified recombinant human GM-CSF and interleukin-3 studies with anti-GM-CSF and anti-IL-3 sera and studies in serum-free cultures. Blood, 72,1381-1386 (1988)
  25. Takahashi, H., Nakamura, S., Asano, K., Kinouchi, M., Ishida-Yamamoto A., and lizuka, H., Fas antigen modulates ultraviolet B-induced apoptosis of SVHK cells: sequential activation of caspase 8, 3, and 1 in the apoptotic process. Exp. Cell Res., 249, 291-298 (1999) https://doi.org/10.1006/excr.1999.4476
  26. Tatsuta, T., Shiraishi, A., and Mountz, J. D., The prodomain of caspase-1 enhances Fas-mediated apoptosis through facilitation of caspase-8 activation. J. Biol. Chem., 275, 14248-14254 (2000) https://doi.org/10.1074/jbc.275.19.14248
  27. Vanio, M., Rozen, L., Bernard, C., Ljubka, M., and Louis-Marie, H., Epidermal growth factor stimulates mitogen-activated protein kinase by a PKC-dependent pathway in human keratinocytes. Biochem. Biophys. Res. Comun., 208, 245-252 (1995) https://doi.org/10.1006/bbrc.1995.1330
  28. Wang, L., Ma, W., Markovich, R., Chen, J-W., and Wang, P. H., Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ. Res., 83, 516-522 (1998) https://doi.org/10.1161/01.RES.83.5.516
  29. Wang, L., Ma, W., Markovich, R., Lee, W. L., and Wang, P. H., Insulin-like growth factor I modulates induction of apoptotic signaling in H9C2 cardiac muscle cells. Endocrinology, 139, 1354-1360 (1998) https://doi.org/10.1210/en.139.3.1354
  30. Watt, W., Koeplinger, K. A., Mildner, A. M., Heinrikson, R. L., Tomasselli, A. G., and Watenpaugh, K. D., The atomic-resolution structure of haman caspase-8, a key activator of apoptosis. Structure Fold. Des., 7, 1135-1143 (1999) https://doi.org/10.1016/S0969-2126(99)80180-4
  31. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275, 1129-1132 (1997) https://doi.org/10.1126/science.275.5303.1129
  32. Umayahara, Y., Kajimoto, Y., Fujitani, Y., Gorogawa, S., Yasuda, S., Kuroda, A., Ohtoshi, K., Yoshida, D., Kawamori, D., Yamasaki, Y., and Hori, M., Protein Kinase C-dependent, CCAAT/Enhancer-binding Protein ${\beta}$-mediated Expression of Insulin-like Growth Factor I gene. J. Biol. Chem., 277, 15261-15270 (2002) https://doi.org/10.1074/jbc.M110827200
  33. Zhivotovsky, B., Orrenius, S., Brustugen, O. T., and Doskeland, S. O., Injected cytochrome c induces apoptosis. Nature, 391, 449-450 (1998)