• Title/Summary/Keyword: ERIC (Enterobacterial repetitive intergenic consensus)-PCR

Search Result 14, Processing Time 0.027 seconds

Enhanced Discrimination of Listeria spp. Using RAPD Fingerprinting Complemented by Ribotyping-PCR (리스테리아균의 특성분석을 위한 Molecular Typing 방법의 상호보완)

  • 임형근;홍종해;박경진;최원상
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.699-704
    • /
    • 2003
  • The results typed by random amplification of polymorphic DNA (RAPD) were compared with those obtained by Enterobacterial repititive intergenic consensus (ERIC) fingerprinting and ribotyping-PCR. The discriminatory power of RAPD typing was the best among the methods tested. RAPD typing with two different primers for 13 Listeria spp. reference strains produced 11 patterns each. In contrast, ERIC fingerprinting produced 9 patterns and ribotyping-PCR produced 7 patterns each. Composite of two separate RAPD (Lis 11 and primer 6) results or RAPD (Lis11)/ ribotyping-PCR differentiated all 13 Listeria spp. reference strains. Therefore, composite of 2 separate RAPD (Lis11 and primer 6) or composite of RAPD (Lis11)/ribotyping-PCR is expected the most promising approach for typing field isolated Listeria spp. strains.

Species-specific Detection of Erwinia pyrifoliae by PCR Assay Using Enterobacterial Repetivive Intergenic Consensus (ERIC) Primers

  • Park, Duck-Hwan;Thapa, Shree Prasad;Kim, Won-Sik;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.267-270
    • /
    • 2010
  • We designed a sensitive and specific PCR-based method with enterobacterial repetitive intergenic consensus (ERIC) primer to detect Erwinia pyrifoliae, which cause shoot blight in Asian pear, from a mixed culture and infected plant materials. The primers specifically detected only E. pyrifoliae and showed no cross-reactivity with other bacterial phytopathogens.

Molecular Typing of Vibrio parahaemolyticus by Repetitive Element-PCR (rep-PCR) (Repetitive Element-PCR (rep-PCR)을 이용한 Vibrio parahaemolyticus 의 분자유전학적 아형 분류)

  • Kim, Won Sik;Hong, Seung Bok;Lee, Kyung;Lee, Jung Nam;Shin, Kyeong Seob
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The enterobacterial repetitive intergenic consensus (ERIC)-PCR is a recently described DNA fingerprinting technique based on amplification of repetitive element distributed in bacteria. We applied of ERIC-PCR to clinical isolates of Vibrio parahaemolyticus and other bacteria associated diarrhea. Twenty isolates of V. parahaemolyticus were used for intragenic genotyping, which were isolated from 2001 to 2002 in Chungbuk National University hospital. For interspecies genotyping, V. vulnificus, V. alginolyticus, V. parahaemolyticus, Escherichia coli, Salmonella and Shigella spp. were used. The genotyping were analyzed by ERIC-PCR. The genotyping of V. parahaemolyticus were grouped two major pattern (A, B) and were subdivided into 10 subtypes (A1, A2, B1-B8) by ERIC-PCR. These method distinctly differentiated bacterial species associated diarrhea. Those results show that ERIC-PCR can be reliable and efficient method for genotyping of V. parahaemolyticus and bacteria associated diarrhea.

  • PDF

Comparison of Different PCR-Based Genotyping Techniques for MRSA Discrimination Among Methicillin-Resistant Staphylococcus aureus Isolates

  • Kim, Keun-Sung;Seo, Hyun-Ah;Oh, Chang-Yong;Kim, Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.788-797
    • /
    • 2001
  • The usefulness of three PCR methods were evaluated for the epidemiological typing of Staphylococcus aureus: an enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), repetitive extragenic palindromic element PCR (REP-PCR), and 16S-23S intergenic spacer PCR (ITS-PCR). The analysis was performed using a collection of S. aureus strains comprised of 6 reference and 79 isolates from patients with various diseases. Among the 85 S. aureus strains tested, 6 references and 6 isolates were found to be susceptible to methicillin, whereas the remaining 73 isolates were resistant to it. PCR methods are of special concern, as conventional phenotypic methods are unable to clearly distinguish among methicillin-resistant S. aureus (MRSA) strains. The ability of the techniques to detect different unrelated types was found to be as follows: ERIC-PCR, 19 types; REP-PCR, 36 types; and ITS-PCR, 14 types. On the basis of combining the ERIC, REP, and ITS fingerprints, the 85 S. aureus strains were grouped into 56 genetic types (designated G1 to G56). The diversities for the 85 S. aureus strains, calculated according to Simpson\`s index, were 0.88 for an ERIC-PCR, 0.93 for a REP-PCR, and 0.48 for an ITS-PCR, and the diversity increased up to 0.97 when an ERIC-PCR and REP-PCR were combined. The above discrimination indices imply that the genetic heterogeneity of S. aureus strains is high. Accordingly, this study demonstrates that DNA sequences from highly conserved repeats of a genome, particularly a combination of ERIC sequences and REP elements, are a convenient and accurate tool for the subspecies-specific discrimination and epidemiologic tracking of S. aureus.

  • PDF

Patterns of Antimicrobial Resistance and Genotyping of Extended Spectrum $\beta$-Lactamase (ESBL) Producing Clinical Isolates in Korea

  • Lee, Gyu-Sang;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.293-304
    • /
    • 2007
  • The emergence of extended spectrum $\beta$-lactamase (ESBL) producing bacteria is worldwide concern. Until recently, the most frequently identified strains in the Republic of Korea were E. coli and Klebsiella spp. The incidence of resistance to extended spectrum $\beta$-lactam antibiotics is increasing in Wonju city, Korea. Total 57 strains of ESBL producing E. coli and Klebsiella species were isolated from Wonju Christian Hospital during a 9 month-period from April to December, 2003. To determine the prevalence and genotypes of the ESBL producing clinical isolates, antibiotic susceptibility and ESBL activity test by VITEK system and double disk synergy (DDS) test, and PCR based genotyping were performed. Fourteen (82%) isolates of 17 ESBL producing E. coli were found to have $bla_{TEM}$ gene and 5 (29%) isolates were found to have $bla_{CTX-M}$ gene by polymerase chain reaction (PCR). Thirty (75%) isolates of 40 ESBL producing Klebsiella species with $bla_{TEM}$ gene, 38 (95%) isolates with $bla_{SHV}$ gene, and 7 (20%) isolates with $bla_{CTX-M}$ type gene were also identified. Enterobacterial repetitive intergenic consensus (ERIC) PCR and similarity index by dendrogram for genetical similarity to band pattern of each clinical isolates were examined. ESBL producing E. coli were grouped into 6 clusters up to 84% of similarity index and Klebsiella species were grouped into 12 clusters up to 76% of similarity index. In conclusion, ESBL producing clinical isolates were characterized with the results from antimicrobial resistance pattern and genetical similarity using ERiC PCR.

  • PDF

bla Genotype and Molecular Epidemiological Analysis of Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Chungcheong Regional Hospitals (충청지역병원에서 분리된 Extended-Spectrum β-Lactamase 생성 대장균과 폐렴간균의 bla 유전형 및 분자역학적 분석)

  • Yook, Keun Dol;Yang, Byoung Seon;Park, Jin Sook
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • A total of 122 ESBL-producing intestinal bacteria were collected from regional hospitals in the Chungcheong area. Combination disk test (CDT) was performed for antimaicrobial susceptability using cefotaxime and cefotaxime/clavulanate according to Clinical Laboratory Standard Institute (CLSI). Mutiplex PCR using specific primers was performed for a detection of ESBL-genotypes and enterobacterial repetitive intergenic consensus (ERIC)-PCR was carried out for the tracking of molecular epidemiology. In the confirmation test using CDT, 73 out of 76 (96.1%) ESBL-producing Escherichia coli and 43 out of 46 (93.4%) ESBL-producing Klebsiella pnemoniae were positive. In the multiplex PCR, 60.5% of E. coil were positive for CTX-M-2 type gene and 56.5% of K. pneumoniae were positive for VEB -1 type gene. In the ERIC-PCR, E. coil isolates formed 5 clusters and K. pneumoniae isolates were grouped into 4 clusters depending on region. Genotypes of clinical isolates are useful for detection and differentiation of ESBL producing intestinal bacteria. The ERIC-PCR method is thought to be helpful for establishing a regional surveillance system for infection due to its formation of different clusters depending on region.

Two Genetically Distinct Groups of Acidovorax citrulli are Present in Watermelon-growing Fields in Korea

  • Choi, Okhee;Cho, Su Kyung;Kang, Byeongsam;Cho, Jaeyeong;Park, Jiyeong;Lee, Yeyeong;Kim, Jinwoo
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.53-59
    • /
    • 2016
  • Bacterial fruit blotch(BFB) of cucurbits caused by Acidovorax citrulli(Acc) continues to diminish fruit yields. The aim of this study was to address whether two genetically distinct populations of Acc are present in watermelon-growing fields in Korea. For this purpose, we used the enterobacterial repetitive intergenic consensus polymerase chain reaction(ERIC-PCR) profiling and substrate-utilization profiles. According to the results of ERIC-PCR, group I and II strains showed clearly differentiated PCR-based fingerprinting profiles. Differences between group I and II strains included amplification of unique, group-specific DNA fragments such as the 1.3-, 0.28-, and 0.25-kb fragments in ERIC-PCR. Acc stains belonging to group I did not use L-leucine, whereas group II strains did use the substrate. Our results support the genetic differentiation of Acc strains into two groups and demonstrate that Acc strains from both groups are previously existed in watermelon-growing fields in Korea. Information about the genetic diversity of Acc under the present study will help scientists and managers form strategies to control BFB.

Differentiation of Four Major Gram-negative Foodborne Pathogenic Bacterial Genera by Using ERIC-PCR Genomic Fingerprinting (ERIC-PCR genomic fingerprinting에 의한 주요 식중독 그람 음성 세균 4속의 구별)

  • Jung, Hye-Jin;Park, Sung-Hee;Seo, Hyeon-A;Kim, Young-Joon;Cho, Joon-Il;Park, Sung-Soo;Song, Dae-Sik;Kim, Keun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1005-1011
    • /
    • 2005
  • Widespread distributions of repetitive DNA elements in bacteria genomes are useful for analysis of genomes and should be exploited to differentiate food-borne pathogenic bacteria among and within species. Enterobacterial repetitive intergenic consensus (ERIC) sequence has been used for ERIC-PCR genomic fingerprinting to identify and differentiate bacterial strains from various environmental sources. ERIC-PCH genomic fingerprinting was applied to detect and differentiate four major Gram-negative food-borne bacterial pathogens, Esherichia coli, Salmonella, Shigella, and Vibrio. Target DNA fragments of pathogens were amplified by ERIC-PCR reactions. Dendrograms of subsequent PCR fingerprinting patterns for each strain were constructed, through which relative similarity coefficients or genetic distances between different strains were obtained numerically. Numerical comparisons revealed ERIC-PCR genotyping is effective for differentiation of strains among and within species of food-borne bacterial pathogens, showing ERIC-PCR fingerprinting methods can be utilized to differentiate isolates from outbreak and to determine their clonal relationships among outbreaks.

Antimicrobial Resistance and Molecular Epidemiologic Characteristics of Stenotrophomonas maltophilia Isolated from Clinical Specimens (병원 재료에서 분리한 Stenotrophomonas maltophilia의 항균제 내성 및 분자역학적 특성)

  • Seol, Sung-Yong;Jang, Kyoung-Soo;Jeong, Oung-Gi;Cho, Eung-Rae;Kim, Neung-Hee;Yu, Hak-Sun;Lee, Yoo-Chul;Cho, Dong-Taek
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.3
    • /
    • pp.239-250
    • /
    • 2000
  • Sixty-eight clinical isolates of Stenotrophomonas maltophilia from inpatients of 2 university hospitals in Taegu were epidemiologically analyzed by using the minimum inhibitory concentrations of 25 antimicrobial drugs, biochemical reaction, pulsed-field gel elctropgoresis (PFGE), and PCR with enterobacterial repetitive intergenic consensus sequences as primer (ERIC-PCR). 1. All the strains were susceptible to minocycline. More than 57% were susceptible to sulfisomidine (Su), ciprofloxacin (Ci), Ofloploxacin (Of), nalidixic acid (Na), and chloramphenicol (Cm), and $19{\sim}35%$ to ceftazidime (Cd), trimethoprim (Tp), Ticacillin-clavulanic acid, and cefoperazone-sulbactam. Most isolates were resistant to ${\beta}$-lactam antibiotics such as ampicillin (Ap), carbenicillin (Cb), cefotaxim (Ct), cefoxitin (Cx), and aminoglycosides including gentamicin (Gm), tobramycin (Tb), amikacin (Ak). 2. All the isolates were multiply resistant of 5 to 17 drugs and showed 40 different resistance pattern types. 3. All the strains showed very similar biochemical reactions except ${\beta}$-galactosidase and nitrate reduction test. Fourteen strains selected randomly were classified 10 different pattern type by PFGE and ERIC-PCR. These two methods showed identical result. Four strains isolated from wound in 1994 showed similar MIC pattern and identical API 20NE profile, PFGE, and ERIC-PCR pattern indicating episodes of cross-infection among patients. These results indicate that PFGE or ERIC-PCR profile has comparable discriminatory power for epidemiological typing of S. maltophilia.

  • PDF

Genotypic and Phenotypic Diversity of PGPR Fluorescent Pseudomonads Isolated from the Rhizosphere of Sugarcane (Saccharum officinarum L.)

  • Rameshkumar, Neelamegam;Ayyadurai, Niraikulam;Kayalvizhi, Nagarajan;Gunasekaran, Paramsamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • The genetic diversity of plant growth-promoting rhizobacterial (PGPR) fluorescent pseudomonads associated with the sugarcane (Saccharum officinarum L.) rhizosphere was analyzed. Selected isolates were screened for plant growthpromoting properties including production of indole acetic acid, phosphate solubilization, denitrification ability, and production of antifungal metabolites. Furthermore, 16S rDNA sequence analysis was performed to identify and differentiate these isolates. Based on 16S rDNA sequence similarity, the isolates were designated as Pseudomonas plecoglossicida, P. fluorescens, P. libaniensis, and P. aeruginosa. Differentiation of isolates belonging to the same group was achieved through different genomic DNA fingerprinting techniques, including randomly amplified polymorphic DNA (RAPD), amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC), and bacterial repetitive BOX elements (BOX) analyses. The genetic diversity observed among the isolates and rep-PCR-generated fingerprinting patterns revealed that PGPR fluorescent pseudomonads are associated with the rhizosphere of sugarcane and that P. plecoglossicida is a dominant species. The knowledge obtained herein regarding the genetic and functional diversity of fluorescent pseudomonads associated with the sugarcane rhizosphere is useful for understanding their ecological role and potential utilization in sustainable agriculture.