• Title/Summary/Keyword: ER chaperone

Search Result 35, Processing Time 0.02 seconds

Emerging roles of protein disulfide isomerase in cancer

  • Lee, Eunyoug;Lee, Do Hee
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.401-410
    • /
    • 2017
  • The protein disulfide isomerase (PDI) family is a group of multifunctional endoplasmic reticulum (ER) enzymes that mediate the formation of disulfide bonds, catalyze the cysteine-based redox reactions and assist the quality control of client proteins. Recent structural and functional studies have demonstrated that PDI members not only play an essential role in the proteostasis in the ER but also exert diverse effects in numerous human disorders including cancer and neurodegenerative diseases. Increasing evidence suggests that PDI is actively involved in the proliferation, survival, and metastasis of several types of cancer cells. Although the molecular mechanism by which PDI contributes to tumorigenesis and metastasis remains to be understood, PDI is now emerging as a new therapeutic target for cancer treatment. In fact, several attempts have been made to develop PDI inhibitors as anti-cancer drugs. In this review, we discuss the properties and diverse functions of human PDI proteins and focus on recent findings regarding their roles in the state of diseases including cancer and neurodegeneration.

4-phenylbutyric Acid Regulates Collagen Synthesis and Secretion Induced by High Concentrations of Glucose in Human Gingival Fibroblasts

  • Lee, Geum-Hwa;Oh, Hyo-Won;Lim, Hyun-Dae;Lee, Wan;Chae, Han-Jung;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.345-351
    • /
    • 2011
  • High glucose leads to physio/pathological alterations in diabetes patients. We investigated collagen production in human gingival cells that were cultured in high concentrations of glucose. Collagen synthesis and secretion were increased when the cells were exposed to high concentrations of glucose. We examined endoplasmic reticulum (ER) stress response because glucose metabolism is related to ER functional status. An ER stress response including the expression of glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), inositol requiring enzyme alpha (IRE-$1{\alpha}$) and phosphoreukaryotic initiation factor alpha (p-eIF-$2{\alpha}$) was activated in the presence of high glucose. Activating transcription factor 4 (ATF-4), a downstream protein of p-eIF-$2{\alpha}$ as well as a transcription factor for collagen, was also phosphorylated and translocalized into the nucleus. The chemical chaperone 4-PBA inhibited the ER stress response and ATF-4 phosphorylation as well as nuclear translocation. Our results suggest that high concentrations of glucose-induced collagen are linked to ER stress and the associated phosphorylation and nuclear translocation of ATF-4.

Endoplasmic Reticulum Stress Response and Apoptosis via the CoCl2-Induced Hypoxia in Neuronal Cells (CoCl2 처리로 유도된 hypoxia상태에서 세포자살과 ER stress에 관련된 인자의 발현)

  • Kim, Seon-Hwan;Kwon, Hyon-Jo;Koh, Hyeon-Song;Song, Shi-Hun;Kwon, Ki-Sang;Kwon, O-Yu;Choi, Seung-Won
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1820-1828
    • /
    • 2010
  • Cobalt(II) chloride, a chemical compound with the formula$CoCl_2$, has been widely used in the treatment of anemia, as a chemical agent for the induction of hypoxia in cell cultures, and is known to activate hypoxic signaling. However, excessive exposure to cobalt is associated with several clinical conditions, including asthma, pneumonia, and hematological abnormalities, and can lead to tissue and cellular toxicity. It is also known to induce apoptosis. One of the questions was that of whether $CoCl_2$ might induce apoptosis via endoplasmic reticulum (ER) stress in neurons. To address this question, first, the level of DNA fragmentation was measured for assay of apoptotic rates using $CoCl_2$ with neuron PC12 cells. After confirmation of apoptosis inductions, under the same conditions, the expression levels of ER stress associated factors [ER chaperones Bip, calnexin, ERp72, ERp29, PDI, and ER membrane kinases (IRE1, ATF6, PERK)] were examined by RT-PCR and Western blotting. These results indicated that apoptosis is induced through activation of ER membrane kinases via ER stress. In conclusion, during induction of apoptosis through $CoCl_2$-induced hypoxia in neuron PC12 cells, ER membrane kinase of IRE1 was dominantly up-expressed, and, consecutively, TRAF2, which has been suggested to be one of the links connecting apoptosis and ER stress, was strongly up-expressed.

Neuroprotective Effects of Parkin and Bcl-2 against Dieldrin-induced Endoplasmic Reticulum Stress (디엘드린 유도성 소포체 스트레스에서의 parkin과 Bcl-2의 신경보호 효과)

  • Seo, Jeong-Yeon;Kim, Jae-Sung;Kim, Do Kyung;Chun, Hong Sung
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.771-777
    • /
    • 2022
  • Dopaminergic (DA) cell death in Parkinson's disease (PD) has been attributed to multiple, distinct genetic and environmental factors. In rare familial PD loss of parkin function mutations play a key role in nigral DA neuron-specific pathogenesis primarily via endoplasmic reticulum (ER) stress. In more prevalent sporadic PD, environmental exposure to pesticides has a significant epidemiological role. However, it is largely unknown how environmental exposure to xenobiotics is etiologically linked with the known etiology in familial PD. In the present study biochemical evidence for a common pathogenic mechanism between sporadic and familial PD has been identified employing the recently characterized mesencephalic DA cell line, N27-A. Dieldrin, an organochlorine pesticide epidemiologically implicated in sporadic PD, induced the markers of ER stress response such as a chaperone BiP/Grp78, heme oxygenase-1 and especially, parkin. Accordingly, dieldrin activated the ER resident Caspase-12, a mediator of ER stress-specific apoptosis, during cell death of N27-A cells. Of great interest the dieldrin-induced DA neuronal cell death was synergistically rescued by the overexpression of ER resident neuroprotective proteins, parkin and Bcl-2. The present findings implicate that accumulation of ER stress could be one of common pathogenic mechanisms in idiopathic and familial PD, and some ER proteins, such as parkin and Bcl-2 may effectively attenuate ER stress-mediated N27-A DA cell death.

A Bombyx mori Transcription Factor, ATFC Binds Directly to the UPRE of Molecular Chaperones

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.133-137
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). In Saccharomyces cerevisiae, such induction is mediated by the cis-acting unfolded response element (UPRE) which has been thought to be recognized by Hac1p transcription factor. We cloned the ATFC gene showing similarity with Hac1p, and then examined to determine whether ATFC gene product specifically binds to UPRE by electrophoretic mobility shift assays. ATFC gene product displayed appreciable binding ${to ^{32}}P-labelled$ UPRE. Therefore, we concluded that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.

Neuroprotective Effect of Hwangryunhaedok-tang Against Glucose-deprivation Induced Cytotoxicity in PC-12 Cells (Glucose-deprivation으로 유발된 PC-12 cell의 세포 고사에 대한 황연해독탕(黃連解毒湯)의 보호 효과)

  • Kim, Hye-Yoon;Shin, Sun-Ho;Lee, In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1462-1469
    • /
    • 2008
  • The purpose of the study was to confirm what effect HRHDT treatment had on cell extinction by damage of endoplasmic reticulum induced to PC-12 cell damage by glucose deprivation. The study confirmed what effect it had on forming the condition of glucose deprivation within a culture fluid of PC-12 cell and on a nerve cell's survival rates and tested whether HRHDT could prevent extinction of PC-12 cell by glucose deprivation. Also, the study confirmed what effect HRHDT treatment had on the emitted quantity of LDH by glucose deprivation. To examine PC-12 cell's behavioral change under the condition of glucose deprivation and a protective effect of HRHDT on the change, the study observed PC-12 cell's behavioral change with a microscope. Also, the study confirmed density of calcium ion within cells followed by a culture time in the condition of glucose deprivation with FACS and confirmed what effect HRHDT treatment had on the above density of calcium ion within cells. Finally, the study carried out the western blot and confirmed what effect HRHDT treatment had on revelation of GRP 78 and CHOP protein and a segmental type of aspase 12. In this study, HRHDT rescued PC-12 cells from glucose deprivation-induced cell death. HRHDT also prevents the LDH release, Ca++ accumulation, and morphological change, which was associated with the ER stress. Furthermore, HRHDT reduced the expression of ER chaperone (Grp78 and CHOP) proteins by glucose deprivation in PC-12 cells. These results suggest that HRHDT might provide a useful therapeutic strategy in treatment of the neurodegenerative diseases caused by glucose deprivation injuries.

Baculovirus Expression and Biochemical Characterization of the Bombyx mori Protein Disulfide Isomerase (bPDI)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.127-131
    • /
    • 2003
  • Protein disulfide isomerase (PDI) found in the endoplasmic reticulum (ER) catalyzes disulfide bond exchange and assists in protein folding of newly synthesized proteins. PDI also functions as a molecular chaperone and has been found to be associated with proteins in the ER. In addition, PDI functions as a subunit of two more complex enzyme systems: the prolyl-4-hydroxylase and the triacylglycerol transfer proteins. A cDNA that encodes protein disulfide isomerase was previously isolated from Bombyx mori (bPDI), in which open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and an ER retention signal of the KDEL motif at its C-terminal, and we report its functional characterization here. This putative bPDI cDNA is expressed in insect Sf9 cells as a recombinant proteins using baculovirus expression vector system. The bPDI recombinant proteins are successfully recognized by antirat PDI antibody, and shown to be biologically active in vitro by mediating the oxidative refolding of reduced and scrambled RNase. This suggests that bPDI may play an important role in protein folding mechanism of insects.

The Identification of Proteins Interacting with CD1d (CD1d와 상호작용하는 단백질의 동정)

  • Hwang, Kwang-Woo;Chun, Tae-Hoon
    • YAKHAK HOEJI
    • /
    • v.50 no.4
    • /
    • pp.263-267
    • /
    • 2006
  • CD1d is an unique antigen presenting molecule which provides antigenic repertoires to NKT cells. To examine molecules required for CD1d antigen presentation, we determined an interaction between CD1d and several endoplasmic reticulum (ER) resident molecular chaperones by co-immunoprecipitation. Results indicated that calnexin and calreticulin seem to be bound to mouse CD1d, but TAP and tapasin do not bind. Further, we screened an yeat two hybrid system to identify proteins that help mouse CD1d transportation in the cytosol. We found that two proteins, heat shock protein a sub-unit $(Hsp90{\alpha})$ and protein kinase C and casein kinase substrate in neurons 3 (PACSIN-3), interact with CD1d. Future study will be focus on the role of these molecules during the CD1d antigen presentation.

Identification of HUGT1 as a Potential BiP Activator and a Cellular Target for Improvement of Recombinant Protein Production Using a cDNA Screening System

  • Ku, Sebastian Chih Yuan;Lwa, Teng Rhui;Giam, Maybelline;Yap, Miranda Gek Sim;Chao, Sheng-Hao
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.577-582
    • /
    • 2009
  • The development of a high-throughput functional genomic screening provides a novel and expeditious approach in identifying critical genes involved in specific biological processes. Here we describe a cell-based cDNA screening system to identify the transcription activators of BiP, an endoplasmic reticulum (ER) chaperone protein. BiP promoter contains the ER stress element which is commonly present in the genes involved in unfolded protein response (UPR) that regulates protein secretion in cells. Therefore, the positive regulators of BiP may also be utilized to improve the recombinant protein production through modulation of UPR. Four BiP activators, including human UDP-glucose:glycoprotein glucosyltransferase 1 (HUGT1), are identified by the cDNA screening. Overexpression of HUGT1 leads to a significant increase in the production of recombinant erythropoietin, interferon ${\gamma}$, and monoclonal antibody in HEK293 cells. Our results demonstrate that the cDNA screening for BiP activators may be effective to identify the novel BiP regulators and HUGT1 may serve as an ideal target gene for improving the recombinant protein production in mammalian cells.

Isolation and Characterization of a Novel Transcription Factor ATFC Activated by ER Stress from Bombyx mori Bm5 Cell Lines (누에 배양세포(Bm5)로부터 분리한 새로운 전사제어인자 ATFC의 특성분석)

  • 구태원;윤은영;김성완;최광호;황재삼;박수정;권오유;강석우
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.596-603
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). To obtain genes related to UPR from B. mori, the cDNA library was constructed with mRNA isolated from Bm5 cell lines in which N-glycosylation was inhibited by tunicamycin treatment. From the cDNA library, we selected 40 clones that differentially expressed when cells were treated with tunicamycin. Among these clones, we have isolated ATFC gene showing similarity with Hac1p, encoding a bZIP transcription factor of 5. cerevisiae. Basic-leucine zipper (bZIP) domain in amino acid sequences of ATFC shared homology with yeast Hac1p. Also, ATFC is up-regulated by accumulation of unfolded proteins in the ER through the treatment of ER stress drugs. Therefore we suggest that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.