DOI QR코드

DOI QR Code

Identification of HUGT1 as a Potential BiP Activator and a Cellular Target for Improvement of Recombinant Protein Production Using a cDNA Screening System

  • Ku, Sebastian Chih Yuan (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR)) ;
  • Lwa, Teng Rhui (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR)) ;
  • Giam, Maybelline (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR)) ;
  • Yap, Miranda Gek Sim (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR)) ;
  • Chao, Sheng-Hao (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR))
  • Received : 2009.02.02
  • Accepted : 2009.03.27
  • Published : 2009.05.31

Abstract

The development of a high-throughput functional genomic screening provides a novel and expeditious approach in identifying critical genes involved in specific biological processes. Here we describe a cell-based cDNA screening system to identify the transcription activators of BiP, an endoplasmic reticulum (ER) chaperone protein. BiP promoter contains the ER stress element which is commonly present in the genes involved in unfolded protein response (UPR) that regulates protein secretion in cells. Therefore, the positive regulators of BiP may also be utilized to improve the recombinant protein production through modulation of UPR. Four BiP activators, including human UDP-glucose:glycoprotein glucosyltransferase 1 (HUGT1), are identified by the cDNA screening. Overexpression of HUGT1 leads to a significant increase in the production of recombinant erythropoietin, interferon ${\gamma}$, and monoclonal antibody in HEK293 cells. Our results demonstrate that the cDNA screening for BiP activators may be effective to identify the novel BiP regulators and HUGT1 may serve as an ideal target gene for improving the recombinant protein production in mammalian cells.

Keywords

Acknowledgement

Supported by : Agency for Science, Technology and Research (A*STAR)

References

  1. Arnold, S.M., Fessler, L.I., Fessler, J.H., and Kaufman, R.J. (2000). Two homologues encoding human UDP-glucose:glycoprotein glucosyltransferase differ in mRNA expression and enzymatic activity. Biochemistry 39, 2149-2163 https://doi.org/10.1021/bi9916473
  2. Borth, N., Mattanovich, D., Kunert, R., and Katinger, H. (2005). Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol. Prog. 21, 106-111 https://doi.org/10.1021/bp0498241
  3. Chanda, S.K., White, S., Orth, A.P., Reisdorph, R., Miraglia, L., Thomas, R.S., DeJesus, P., Mason, D.E., Huang, Q., Vega, R., et al. (2003). Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc. Natl. Acad. Sci. USA 100, 12153-12158 https://doi.org/10.1073/pnas.1934839100
  4. Chusainow, J., Yang, Y.S., Yeo, J.H., Toh, P.C., Asvadi, P., Wong, N.S., and Yap, M.G. (2009). A study of monoclonal antibodyproducing CHO cell lines: What makes a stable high producer? Biotechnol. Bioeng. 102, 1182-1196 https://doi.org/10.1002/bit.22158
  5. Davis, R., Schooley, K., Rasmussen, B., Thomas, J., and Reddy, P. (2000). Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol. Prog. 16, 736-743 https://doi.org/10.1021/bp000107q
  6. Huang, Q., Raya, A., DeJesus, P., Chao, S.H., Quon, K.C., Caldwell, J.S., Chanda, S.K., Izpisua-Belmonte, J.C., and Schultz, P.G. (2004). Identification of p53 regulators by genome-wide functional analysis. Proc. Natl. Acad. Sci. USA 101, 3456-3461 https://doi.org/10.1073/pnas.0308562100
  7. Ku, S.C., Ng, D.T., Yap, M.G., and Chao, S.H. (2008). Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Biotechnol. Bioeng. 99, 155-164 https://doi.org/10.1002/bit.21562
  8. Lee, J., Lau, J., Chong, G., and Chao, S.H. (2007). Cell-specific effects of human cytomegalovirus unique region on recombinant protein expression. Biotechnol. Lett. 29, 1797-1802 https://doi.org/10.1007/s10529-007-9490-7
  9. Liu, J., Bang, A.G., Kintner, C., Orth, A.P., Chanda, S.K., Ding, S., and Schultz, P.G. (2005). Identification of the Wnt signaling activator leucine-rich repeat in Flightless interaction protein 2 by a genome-wide functional analysis. Proc. Natl. Acad. Sci. USA 102, 1927-1932 https://doi.org/10.1073/pnas.0409472102
  10. Meissner, P., Pick, H., Kulangara, A., Chatellard, P., Friedrich, K., and Wurm, F.M. (2001). Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol. Bioeng. 75, 197-203 https://doi.org/10.1002/bit.1179
  11. Oyadomari, S., Yun, C., Fisher, E.A., Kreglinger, N., Kreibich, G., Oyadomari, M., Harding, H.P., Goodman, A.G., Harant, H., Garrison, J.L., et al. (2006). Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126, 727-739 https://doi.org/10.1016/j.cell.2006.06.051
  12. Sorger, P.K., and Pelham, H.R. (1987). The glucose-regulated protein grp94 is related to heat shock protein hsp90. J. Mol. Biol. 194, 341-344 https://doi.org/10.1016/0022-2836(87)90380-9
  13. Ungar, D., Oka, T., Brittle, E.E., Vasile, E., Lupashin, V.V., Chatterton, J.E., Heuser, J.E., Krieger, M., and Waters, M.G. (2002). Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell Biol. 157, 405-415 https://doi.org/10.1083/jcb.200202016
  14. van Huizen, R., Martindale, J.L., Gorospe, M., and Holbrook, N.J. (2003). P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J. Biol. Chem. 278, 15558-15564 https://doi.org/10.1074/jbc.M212074200
  15. Wright, J.L., Jordan, M., and Wurm, F.M. (2003). Transfection of partially purified plasmid DNA for high level transient protein expression in HEK293-EBNA cells. J. Biotechnol. 102, 211-221 https://doi.org/10.1016/S0168-1656(03)00032-4
  16. Yamamoto, K., Yoshida, H., Kokame, K., Kaufman, R.J., and Mori, K. (2004). Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J. Biochem. 136, 343-350
  17. Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741-33749 https://doi.org/10.1074/jbc.273.50.33741
  18. Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., and Mori, K. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755-6767 https://doi.org/10.1128/MCB.20.18.6755-6767.2000
  19. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001a). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881-891 https://doi.org/10.1016/S0092-8674(01)00611-0
  20. Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., and Mori, K. (2001b). Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21, 1239-1248 https://doi.org/10.1128/MCB.21.4.1239-1248.2001

Cited by

  1. Human T-lymphotropic virus tax activates human cytomegalovirus major-immediate early promoter and improves production of recombinant proteins in HEK293 cells vol.27, pp.3, 2009, https://doi.org/10.1002/btpr.571
  2. Increased expression of the integral membrane proteins EGFR and FGFR3 in anti-apoptotic Chinese hamster ovary cell lines vol.59, pp.3, 2009, https://doi.org/10.1002/bab.1000
  3. Analysis of glycoprotein processing in the endoplasmic reticulum using synthetic oligosaccharides vol.88, pp.2, 2009, https://doi.org/10.2183/pjab.88.31
  4. Deciphering the Roles of Glycan Processing in Glycoprotein Quality Control through Organic Synthesis vol.77, pp.12, 2009, https://doi.org/10.1271/bbb.130594