• Title/Summary/Keyword: ER Model

Search Result 265, Processing Time 0.016 seconds

Estimation of Performance Variation of ER Clutch due to Temperature Increase of ER Fluid (ER 유체의 온도상승에 의한 ER 클러치의 성능변화 예측)

  • 이규한;심현해;김창호;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.151-166
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a controlled system with electric field strength. Current problem of this device is that the temperature of ER fluid increases when ER clutch is operating and affects the performance of ER clutch. This study was undertaken to estimate this performance variation due to temperature increase of ER fluid. Analytic power transmission relationships and the temperature increase model using the rheological model of ER fluid were developed and the dynamic model of proposed ER clutch system was constructed, also. With this relationships, effects of changing geometric, kinetic parameters of ER clutch and ER fluid properties were described and performance variations due to temperature increases of ER fluid were estimated. In conclusion, compared with neglecting temperature increase effects, a performance of ER clutch was very differential. Therefore, to achieve uniform performance of ER clutch, we have to improve thermal stability of ER fluid with a view point of material development and design carefully ER clutch considering temperature increase effects with a view point of mechanical design skill.ign skill.

  • PDF

Damping Force Characteristics of ER Damper Considering Hysteresis (ER 댐퍼의 이력현상을 고려한 댐핑력 특성 고찰)

  • 홍성룡;송현정;한상수;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.489-494
    • /
    • 2002
  • This paper presents hydraulic model which can capture the hysteric damping force behavior of ER damper. A flow mode rue ER damper is manufactured, and its field-dependent damping forces are measured. Newly proposed hydraulic model which derived from physical hydro-mechanical parameters of ER damper are conventional Bingham model are investigated to represent the field-dependent damping force characteristics of ER damper. After principal parameters of two models are estimated from the measured damping forces data, the force vs velocity hysteresis cycles are then reconstructed. The results show that the proposed hydraulic model can capture the hysteresis behavior of ER damper accurately.

  • PDF

Power Transmission Mechanism of Electrorheological Clutch (Part II: Estimation of Performance Variation due to Temperature Rise of Eiectrorheological Fluid) (전기유변성 클러치의 동력전달 메커니즘 제2보:전기유변성 유체의 온도상승에 의한 성능변화 예측)

  • 이규한;심현해;김창호;임윤철
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.73-84
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a controlled system with electric field strength. Currently, the temperature of ER fluid increases and affects the performance of ER clutch when ER clutch is operating. This study was undertaken to estimate this performance variation due to temperature rise of ER fluid. An analytic heat transfer model of concentric cylinder type ER clutch was developed and with this model, effects of changing geometric, kinetic parameters of ER clutch and ER fluid properties were described. In conclusion, compared with neglecting thermal effects, a performance of ER clutch was very differential and for uniform performance of ER clutch, we have to improve thermal stability of ER fluid. ER fluid.

Power Transmission Mechanism of Electrorheological Clutch Part III: Experimental considerations on performance of ER clutch (전기유변성 클러치의 동력전달 메커니즘 제3보 : ER 클러치 성능에 관한 실험적 고찰)

  • 이규한;심현해;김창호;임윤철
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a power transmission system controlled with electric field strength. In this paper(Part III), the behavior of ER clutch under proper conditions was investigated experimentally and compared to theoretical analyses developed from Part I, II. Considering the optimum design concept proposed from Part I, the concentric cylinder type of ER clutch was designed and the experimental apparatus for the performance test was constructed. The comparisons made indicated that the power transmission model of ER clutch and the temperature rise model of ER fluid developed from Part I, II were acceptable for engineering design calculations.culations.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc-Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.659-666
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological(ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.438-443
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological (ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

  • PDF

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.

Power Transmission Mechanism of Electrorheological Clutch Part I: Analytical development of power transmission mechanism (전기유변성 클러치의 동력전달 메커니즘 제1보: 동력전달 메커니즘의 해석적 전개)

  • 이규한;심현해;김창호;임윤철
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.27-38
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a power transmission system controlled with electric field strength. This device responses very rapidly when controlled by rapid and continuous electrical signal and can form a servosystem. Wear, noise and vibration during operation is very low level. This study was undertaken to investigate substitutive possibilities of this ER clutch for existing power transmission mechanism. An analytic relationships using rheological model (so called, 'Bingham plastic model') of ER fluid were developed, and operation constraints and optimum design concepts were constructed. With this relationships, typical responses of ER clutch and effects of changing geometric, kinetic parameters of ER clutch and ER fluid properties were described. In conclusion, compared with existing mechanisms, an excellent performance of ER clutch was confirmed.confirmed.

Performance Evaluation of a Semi-Active ER Damper with Free Piston and Spring (부동피스톤과 스프링을 갖는 반능동 ER댐퍼의 성능평가)

  • Choe, Seung-Bok;Kim, Wan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.691-700
    • /
    • 2000
  • This paper presents a novel type of a semiactive damper featuring an electro-rheological(ER) fluid. Unlike conventional cylindrical ER damper, the proposed one has controllable orifices by the intensity of electric fields (We call it orifice type). The dynamic model of the orifice type ER damper is formulated by incorporating field-dependent Bingham properties of an arabic gum-based ER fluid. Design parameters such as electrode gap are subsequently determined on the basis of the dynamic model. After manufacturing the orifice type ER damper, field-dependent damping forces and damping force controllability are empirically evaluated. In the evaluation procedure, conventional cylindrical ER damper is adopted and its performance characteristics are compared with those of the orifice type ER damper. In addition, the proposed one is installed with a full-car model and its vibration control performance associated with a skyhook controller is investigated.

Bingham Properties and Damping Force Control of an ER Fluid under Squeeze Mode (압착모드하에서 ER유체의 빙햄특성 및 댐핑력 제어)

  • 홍성룡;최승복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.37-45
    • /
    • 2002
  • This paper presents the field-dependent Bingham characteristics and damping force control of an electro-rheological (ER) fluid under squeeze mode operation. The squeeze force of the ER fluid due to the imposed electric field is analyzed and an appropriate size of the disk-type electrode is devised. On the basis of the theoretical model of the ER fluid under squeeze mode operation, the yield stress and response speed of the ER fluid are distilled from the time responses of squeeze force to the step electric potentials. Measured squeeze forces under various excitation conditions are compared with the predicted ones from Bingham model and time constant obtained at the transient response test. In addition, the controllability of the field-dependent damping force of the ER fluid under squeeze mode is experimentally demonstrated by implementing simple PID controller.