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Abstract

Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing
these devices to achieve high system performance is the development of accurate models and control algorithms that can take
advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of
the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency
coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper.

Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER
damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model
is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for
analysis and simulation, Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER

damper for required damping force.
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1. Introduction

Electro-Rheological (ER) fluids are colloidal suspensions
which exhibit large reversible changes in flow properties such
as the apparent viscosity when subjected to sufficiently strong
electric fields. Since Winslow[1] reported on the ER fluid,
many researchers have been studying the mechanism and
application of ER fluids. The scientific challenges in the field
of ER fluids and devices consist in the development of
optimal control strategies and the mathematical modeling and
numerical simulation. To take maximum advantage of ER
fluids in control applications a reliable method is needed to
predict their nonlinear response. Several phenomeno’iogical
models characterizing the behavior of ER fluid devices have
been presented.

In order to characterize the ER damping mechanism
Stanway proposed a mechanical model commonly referred to
as the Bingham model, which combines viscous and coulomb
friction [2]. In this model, damping force of ER damper is
expressed by the polynomial with the muitiple power of piston
velocity and the coefficients of polynomial change according
to applied electric field. Mui[3] proposed dynamic model of
ER damper including the equivalent inertia that consider
coulomb resistance, fluid resistance and fluid flow. From the
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analysis of coefficients of damping force model, the damping
force changes depend on the applied electric field as well as
frequency of applied input.

Gamota and Filisko presented an extension of the Bingham
model to describe the hysteretic response of ER fluid in the
pre-yield and the post-yield region as well as at the yield
point [4]. Focusing on predicting the behavior of an ER fluid
device Powell proposed a mechanical analogue consisting of a
viscous damper, a nonlinear spring and a frictional element in
parallel [5]. This model is much easier to handle more
mathematically than extended Bingham model as well as
describe the hysteretic response of ER damper.

In this paper, analysis of higher order spectrum about
measured damping force is performed and confirmed the
existence of nonlinearity of ER damper. From the results, we
propose damping force model expressed by the polynomial
with the multiple power of piston velocity and show the
accuracy of damping force model by comparing with
experimental results.

Control of damping force of an ER damper is also very
challenging because the strong nonlinearity and the semi-active
relationship between the damping force and the input voltage.
So the force generated by the ER damper cannot be

"commanded directly. In order to overcome these difficulties,

several researches were done.

Choi proposed MR damper model that express the influence
of magnetic field by the first order linear equation [6]. So he
can obtain easily the inverse model of ER damper. Xia
presents an inverse model which has been constructed by
using a multi-layer perceptron optimal neural network and
system identification [7]. Wang proposed inverse model for



modified Bouc-Wen model of MR fluid damper using
feedforward and recurrent neural networks [8].

In the case of ER damper model proposed in this paper,
nonlinearity of electric field is included in damping force
model. Therefore it is difficult to derive inverse model of ER
damper from proposed damping force model. So we obtained
inverse model of ER damper by using multi-layer perceptron
neural network.

In order to show the applicability of inverse model, we
performed simulation of fuzzy sky-hook control with ER
damper model.

2. Nonlinear ER Damper Model

2.1 Configuration of test bench

The structure of ER damper is far different from that of the
conventional hydraulic or -electro-mechanical damper. This
damper has inner and outer cylinders. The ER fluids flow the
gap between two cylinders used as the electrodes with the
plus and minus polarities, respectively. The damping force is
controlled by the intensity of the electric field applied to the
gap. ER fluid, Bayer Company's TPAI 3566, flows through
the duct between cylinder and accumulator.

ER damper test equipment is designed and implemented to
excite ER damper using hydraulic servo system with Moog
J072-011 servo valve and MTS T-LP-type LVDT (Linear
Variable Differential Transformer). Figure 1 shows a schematic
diagram of the test equipment used for the measurement of
ER properties. The high voltage amplifier used in this study is
10/10A Amplifier, which was manufactured by TREK
Corporation. In order to measure the damping force of ER
damper, load cell(SENSOTEC Corporation Model 45) was
used and it's measuring range is +8896N.
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Fig. 1. Schematic diagram of the experimental setup

2.2 Nonlinear characteristics analysis of damping force
using higher order spectra

There are situations in practice in which the interaction
between two harmonic components causes contribution to the
power at their sum and/or difference frequencies. This
frequency interaction means that the signal energy
concentrated in input frequency is distributed to other output
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frequencies and can understand as energy transfer between
frequencies.

Therefore it can utilize by useful means to analyze the
nonlinear properties of the system through the perception of
correlation between modes and analysis of amplitude. This
frequency interaction can observe using higher order spectrum
[9, 101.

When is difficult to analyze the nonlinear interaction by
first order moment(correlation) and power spectral density,
high order spectral analysis is useful method to analyze the
amplitude of energy which transferred by frequency
interaction. High order spectrum is described by multiple
Fourier transform of signal cumulant, the k-th order cumulant
is represented by equation 1.

Coy(T15 7o Ty) =E{y(O)y(t+7)y(@+7,)-yE+7)} (1)

We define equation (2) as higher order spectrum, equation
(3) as bispectrum, and equation (4) as trispectrum by Fourier
transform of k-th order cumulants.

Sey(fioreos o) = [[ jck,yu,,--~,rk-.>~exp[—j§zaf,-r,.}r,--~drH )

8,,(f )= [[Co (51, 7) - exp(= 127 fir, + fir))drdz, (3)
Ss.y(flafz’f;) = 'U.k'),y('rurzsfz)'exp(_jzﬂ(flrz + £t + fT))dndrdr, (4)

In order to present bispectrum and trispecturm as frequency
function, equation  (6)defines  as
auto-bispectrum and auto-trispectrum, k-th order moments are
express as equation (7) and equation (8).

S, (fis ) = EF (AOY (DY (At )] )

equation (5) and

Sy, (fis fur ) = EX Y (DY (Y (£t £, £ )] 6
Ry, @2 = [[EY UYL (£ )} e Vm oo gpag; 7)

Ry, (@) = [[[EVUDYRVAY (£ 152 f)] €0 ionggarar (8)

Where Y is the complex conjugate of Y . Bicoherence of
equation (9) and tricoherence of (10) are used to analysis that
the phase interaction is produced due to 2nd and 3rd order
terms of nonlinear system.

) I8, (5. 1
B (f, 1) = 2 5 ©)
E[Y (DY EQY (A £ 1))
S3 1>J/29J3 ’
2 for )= 52,11 ) (10)

EY(OY DY A1 EY (£ 4 £ L) ]

Bicoherence and tricoherence satisfy in the range of 0< &’
<1 and 0</<1. And it used to analysis of correlation of
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hy, £, Atf, and LESiE S5,
fixfy, and fix fox S5 if bicoherence or tricoherence is
near to 'l', then the

In frequency component

frequency energy is produced by only
mode correlation of input frequency /i and /:. Otherwise if

bicoherence  or tricoherence is near to '0’, then we can

consider that there are no phase relation and f,, /2, i /2,

and /i * /2% /5 are inputted system independently. For these
reason, bicoherence and tricoherence are used to analysis of
phase correlation that generated by 2nd and 3rd terms of
nonlinear system [11, 12].

From Figure 2, it is apparent that nonlinear characteristics
can be achieved with the measured damping signal using
higher order spectra analysis.
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Fig. 2. Higher order spectrum of damping force signal at

E=4kV/mm (input frequency=2Hz)
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2.3 Modeling of damping force

From the subsection 2.2, we confirmed damping force
model can expressed by k-th order polynomial. Therefore we
proposed damping force model of 3rd order polynomial as
equation (11). ’

In this paper, damping model considering 3th-order terms
is suggested and equation (11) becomes
fr=cvte,v|v]+ey? (11D

The coefficient ¢,, ¢,, and ¢3 are obtained using least

squared error methods. If the measured damping force is 7,
the error function Q is as follows.

0= EF - 1,Y1= EE - qv—c-ev')]
= ELF-26 ELFy) - 20, EL F] - 26, LRV |+ G EDV Y+ GEV 1+ GED®] (12)
+266, B M1+ 20,6, Fv ] + 266, Av']

The coefficients of damping force model obtained from
Gaussian random excitation signal are shown in Figure 3. The
coefficient c; is increase lineally according to amplitude of
electric field. And the coefficient ¢, changed rapidly between
1 kV/mm and 2 kV/mm. The coefficient ¢3 decreased more
than 2 kV/mm preferably.
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Fig. 3. Coefficients of nonlinear damping model with Gaussian
input signal

Figure 4 show that the measured data of experiment system
and modeling data of damping force simulation with random
input signal with 2kV/mm and 3kV/mm. As a result, proposed
damping force model shows a good performance.
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Fig. 4. Measured data and modeling of the damping force
with random input signal

3. Inverse Model of ER Damper Using NN

Damping force model of ER damper is nonlinear about
piston velocity and applied electric field. Therefore in order to
generate reference damping force, it requires inverse model of
ER damper [6-8].

In this paper, it is difficult to obtain inverse model of ER
damper because proposed ER damper model is expressed by
nonlinear equation about damping force and electric field. In
order to overcome this problem, we used neural network for
inverse model of ER damper because it has not only been
successfully used in solving complex problems in pattern
recognition and time series prediction, but also has been
proposed for the identification and control of nonlinear
dynamical systems. And the Levenberg-Marquardt Method was
used to minimize the mean square error, due to its rapid
convergence properties and robustness.

3.1 Structure of MLP network

The multi-layer perceptron network (MLP) is the most often
used member in the neural network family due to its ability to
model simple as well as very complex function relationships.
To obtain inverse model, we proposed three layer feedforward
MLP-network with 2 inputs, | output, 20 hidden neurons and
one bias as shown as Figure 5. For these MLP-networks, the
activation function of hidden layer is sigmoidal activation
function and the activation function of output layer is linear
activation function.
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Fig. 5. Fixed structure neural network used for inverse
modeling

3.2 Training of MLP to obtain inverse model of ER
damper

Generally, a neural network must learn how to classify
input patterns. It has been experimentally observed that as the
number of layers of a network increases, it can classify more
and more complicated patterns. A significant problem is how
a network can determine the error between its output and the
desired output. The network, then, overcomes the mismatch
between desired and actual outputs by adjusting the weighing
of interconnections. The backpropagation algorithm originally
introduced by Minsky and Papert, solves this problems by
using all of the processing elements and adjusting their total
interconnections. It does so by propagating the output layer
error to the preceding layer via the existing connections. This
operation is then repeated until reaching the input layer

In this paper, the Gauss-Newton-based Levenberg-Marquardt

(LM) method was used to minimize the mean-square error,

due to its rapid convergence properties and robustness.

In order to train the neural network, we made 1000 data
sets that consist of damping force, piston velocity, and electric
field from damping force model. The 500 data sets of this
used for training of neural network and the other data sets are
used for verify the optimal network of inverse model. The
learning rate and mean-square error goal of LM method are
selected as 0.05 and 10-5 kV/mm respectively. Figure 6 shows
the convergence characteristics of MLP network.
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Fig. 6. Convergence Characteristics of Neural Network

Figure 7(a) shows the output electric field of Inverse model
and its comparison with the desired electric field to the ER
damper for training data set. Figure 7(b) shows simulation
result using 500data sets for verification to inverse model.
Mean square error of this simulation shows satisfied result by
0.022 kV/mm.
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4. Simulations

4.1 Damping force control

An accuracy of damping force control of the ER damper
depends upon the damper model. To demonstrate this, an
open-loop control system to achieve a desirable damping force
is established as shown in Figure 9. In the case of closed-loop
control systems require additional sensor as load cell, thus
most of case open-loop control system is used because of easy
implementation.
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Fig. 9. Comparison of Reference damping force and Output
damping force
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Fig. 10. Control input of ER damper

In order to verify the performance of inverse model the
real damper system is required, but this paper simulate inverse
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model using proposed nonlinear ER damper model.

If the desired damping force is given, electric field is
determined by inverse model to implement desired damping
force. And then this electric field inputted to damper model.

Figure 8 shows the control performance of damping force
in open-loop control system. The frequency and amplitude of
desired damping force are selected as 1.4 Hz and £700N. And
excitation frequency and amplitude are given as 1.4Hz and 20
cmy/s. The comparative results between the desired damping
force and output damping force are shown in Figure 9. We
clearly see that output damping force can follows well desired
damping force. Figure 10 shows contro! input of ER damper.

4.2 Fuzzy Sky-hook control with ER damper model

In this section, we simulate quarter-car suspension system
with ER damper fuzzy sky-hook control algorithm{13] as
shown in Figure 11. The quarter-car suspension model
parameters have the following values: ’

m,=368kg, m, =59.1kg, k, =45080N /m, k, =213640N /m
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Fig. 11. Block diagram of Fuzzy Sky-hook control with ER
damper model
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Fig. 12. Input/Output membership functions

The proposed fuzzy sky-hook control combines the fuzzy
logic theory with the sky-hook principle to improve control
performance. The piston velocity and acceleration are used as
input of fuzzy logic controller (FLC) and damping force is
used as output of FLC. For each inputs and output, a
triangular membership function is used as shown in Figure 12.
The FLC rule-base of fuzzy sky-hook controller is detailed in
Table I
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Table I Fuzzy control rule

NB|[NM[NS[ZR [ PsS [PM | PB
NB | PB | PB|[PM|ZR | ZR | ZR | NS
NM | PB [ PB [PM| ZR | ZR | NS
NS | PB |PM | PS [ ZR | ZR | NS
Z |ZR | PB [PM| PS | ZR | NS | NM
PS [ PM | PS | ZR | ZR
PM|PM| Ps |ZR | ZR | NM | NB
| PB [ PS |ZR | ZR | ZR [ NM | NB

AEfEAEAEA

Figure 13 shows comparison of desired damping force of
fuzzy sky-hook controller and output damping force of ER
damper model, and shows electric field input of ER damper.
Figure 14 shows simulation results of fuzzy sky-hook with ER
damper model and fuzzy sky-hook without ER damper model.
From the simulation results, we confirmed that the inverse
model of ER damper apply to fuzzy sky-hook control properly.
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Fig. 13. Damping force and Control input
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5. Concluding Remarks

In this paper, we performed characteristic test using
nonlinear frequency by measuring of the damping force and
signal process of bispectrum and trispectrum. And we
confirmed existence of nonlinear properties through test
results. The damping force model of ER damper is obtained
by higher order equation of damper velocity terms and the
simulation resuits are compared with the experimental data on
the mechanisms responsible for the vibration of the damping
characteristics of the precision equipment a real commercial car.

To generate desired damping force in applications of ER
damper, the inverse model of ER damper is necessary.
Therefore we implement inverse model by using MLP
networks with 2 hidden layers and 1 output layers. In order to
verify the performance of inverse model, damping force
control was performed. And we confirmed the applicability of
inverse model through the simulation of fuzzy sky-hook



control with ER damper model.

We expect that the proposed ER damper and inverse model
may be very useful for the vibration control of many relevant
engineering applications.
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