• 제목/요약/키워드: ER마운트

검색결과 17건 처리시간 0.026초

제어 가능한 ER 마운트를 이용한 유연 구조물의 진동제어 : 실험적 고찰 (Vibration Control of Flexible Structures Using Controllable ER Mounts : Experimental Investigation)

  • 최승복;손정우;한영민
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.400-408
    • /
    • 2009
  • 이 논문에서는 제어 가능한 ER 마운트를 이용한 유연 구조물의 진동제어 성능을 실험적으로 고찰하였다. 압착 모드형 ER 마운트를 설계하고, 전기장 인가에 따른 댐핑력 특성을 실험적으로 평가하였다. 제작된 ER 마운트를 빔과 프레임 형태의 유연 구조물에 적용하였고, 최적 제어기를 사용하여 시간 영역과 주파수 영역에서 진동제어 성능을 평가하였다.

ER 유체를 이용한 CD-ROM 피딩 시스템의 진동 제어 (Vibration Control of CD-ROM Feeding System Using ER Fluids)

  • 김형규;임수철;최승복;박영필
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.97-104
    • /
    • 1999
  • 본 연구에서는 전기장의 인가 유무에 따라 유체의 유변성질이 가역적으로 변화하는 ER(electro-rheological) 유체를 이용하여 CD-ROM(compact disc-read only memory) 마운트를 구성한 후 피딩 시스템의 진동제어를 수행하였다. 이를 위하여 우선 특수화학처리된 전분계 ER유체를 조성하였으며, 전단모드 및 유동모드하에서 전기장에 따른 항복응력을 실험적으로 도출하였다. 도출된 ER유체의 항복응력에 근거하여 복합모드형 CD-ROM 마운트를 설계, 제작하였다. 제작된 ER CD-ROM 마운트의 진동절연 특성을 주파수 영역에서 고찰하였으며 기존의 고무마운트 성능과 비교하였다. 나아가서 제안된 마운트를 장착한 정보저장기기 드라이브 피딩 시스템의 동적 모델링을 수행하였으며, 진동제어를 위한 스카이훅 제어기를 설계하였다. 컴퓨터 시뮬레이션을 통하여 여러 외란(가진) 조건에 따른 피딩 시스템의 진동제어 성능을 주파수 및 시간 영역에서 고찰하였다.

  • PDF

복합모드형 ER엔진마운트의 성능평가 (I);엔진마운트의 제작 및 시험 (Performance Evaluation of a Mixed-Mode Type ER Engine Mount (I);Manufacturing and Test of Engine Mount)

  • 최영태;최승복
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.370-377
    • /
    • 2000
  • This paper presents a mixed-mode type ER(electro-rheological) engine mount, and its vibration control performance for a passenger vehicle is presented. The field-dependent yield stress of a transfo rmer oil-based ER fluid is empirically distilled in both shear and flow modes. This is then incorporated with the governing equation of motion of the proposed mixed-mode(shear mode plus flow mode) type engine mount. The damping force is analyzed with respect to the intensity of the electric field and design parameters such as electrode gap. Subsequently, the ER engine mount which is equivalent to the conventional hydraulic engine mount in terms of the damping level is designed and manufactured. Both computer simulation and experimental test are undertaken in order to evaluate vibration isolation performance. In addition, this performance is compared with that of the conventional hydraulic engine mount.

작동모드에 따른 ER마운트의 동특성 해석 (Dynamic Characteristics of ER Mounts with different operation modes)

  • 홍성룡;최승복;정우진;함일배;김두기
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.819-829
    • /
    • 2000
  • Dynamic Characteristics of two different types of ER(electro-rheological)mounts ; flow and shear mode types are analyzed and compared. As a first step, field-dependent Bingham models of a chemically treated starch/silicone oil-based ER fluid are empirically identified under both flow and shear mode conditions. The models are them incorporated to the governing equation of the corresponding mode ER mount. For the reasonable comparison between two ER mounts, electrode parameters such as electrode gap are designed to be same. Dynamic stiffness and displacement transmissibility of each ER mount are evaluated in frequency domain with respect to the intensity of electric filed. In addition, vibration control capability of each ER mount is investigated in both frequency and time domains by employing the skyhook controller.

  • PDF

200 kg급 압착모드형 ER 마운트의 진동제어성능 고찰 (Investigation on Vibration Control of Squeeze Mode ER Mount Subjected to 200 kg of Static Load)

  • 정우진;정의봉;홍성룡;최승복
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.882-889
    • /
    • 2002
  • This paper presents vibration control performance of a squeeze mode ER mount for high static load. After experimentally investigating the field-dependent damping force under the squeeze mode motion, a squeeze mode ER mount which can support 200 kg of static load is designed and manufactured. Displacement transmissibility of the proposed ER mount is experimentally evaluated in frequency domain with respect to the intensity of the electric field, and a sky-hook control algorithm is designed to attenuate unwanted vibration. Vibration isolation capabilities of the flow mode ER mount and rubber mount are compared to those of the proposed squeeze mode ER mount.

압착모드형 ER마운트를 이용한 보 구조물의 진동저감 해석 (Vibration Reduction of Beam Structure Using Squeeze Mode ER Mount)

  • 정우진;김두기;정의봉;홍성룡;최승복
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.557-564
    • /
    • 2002
  • To reduce unwanted vibrations in war ship which may be transmitted through underwater path, it is required to use high damping mounts to isolate the vibration. In this work, the beam structure with squeeze mode ER mount is proposed and response characteristics such as acceleration and force transmissibility of beam with constant voltage and optimal controller are experimentally analyzed. The controller is empirically realized and control responses are evaluates in frequency domains. Experiments show vibration reduction capability of squeeze mode ER mount.

ER 엔진마운트를 장착한 승용차량의 진동제어 성능 (Vibration Control Performance of a Passenger Vehicle Featuring ER Engine Mounts)

  • 송현정;최승복;전영식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.481-486
    • /
    • 2000
  • This paper presents vibration control performance of a passenger vehicle installed with olectro-rheological(ER) engine mounts. As a first step, a mixed-mode ER engine mount is modeled and manufactured. After verifying the controllability of the dynamic stiffness by the intensity of the electric field, ER engine mounts are incorporated with a full-car model. The governing equation of motion is then formulated by considering engine excitation force. A skyhook controller to attenuate vibration motions is designed. The controller is implemented through hardware-in-the-loop simulation and control responses are presented in the both frequency and time domains.

  • PDF

압착모드형 ER 마운트를 이용한 보 구조물의 진동저감 해석 (Vibration Reduction of Beam Structure using Squeeze Mode ER Mount)

  • 정우진;김두기;정의봉;홍성룡;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.499-504
    • /
    • 2002
  • To reduce unwanted vibrations in war ship which may be transmitted through underwater path, it is required to use high damping mounts to isolate the vibration. In this work, the beam structure with squeeze mode ER mount is proposed and response characteristics such as acceleration and force transmissibility of beam with constant voltage and optimal controller are experimentally analyzed. The controller is empirically realized and control responses are evaluated in frequency domains. Experiments show vibration reduction capability of squeeze mode ER mount.

  • PDF

지능재료를 이용한 엔진 마운트의 진동제어 (Vibration Control of Engine Mount Utilizing Smart Materials)

  • 송현정;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.297-300
    • /
    • 2005
  • This paper presents vibration control of an engine mount for a passenger vehicle utilizing ER fluid and piezoelectric actuator. The proposed engine mount can be isolated the vibration of wide frequency range with many types of amplitude. The main function of ER fluid is to attenuate vibration for low frequency with large amplitude, while the piezoelectric actuator is activated in hish frequency range with small amplitude. A mathematical model of the engine mount is derived using Hydraulic model and mechanical model. After formulating the governing equation of motion, then field-dependent dynamic stiffness of the engine mount is evaluated for various engine speed and excitation amplitude conditions. Then robust controller is designed to attenuate vibration of wide range frequency component. Computer simulation is undertaken in order to evaluate the vibration control performance such as transmissibility magnitude in frequency domains.

  • PDF

온도 변화에 따른 ER 엔진마운트의 제어 특성 (Control Characteristics of ER engine mount considering Temperature Variation)

  • 송현정;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.180-183
    • /
    • 2005
  • The engine mount of vehicle systems is role of support engine mass and isolate noise and vibration from engine disturbance forces. One of attractive candidates to achieve this goai is to utilize a semi-active ER engine mount. By applying this, we can effectively control damping force and hence the noise and vibration by just controlling the intensity of electric field. However, control performance of the engine mount may be very sensitive to temperature variation during engine operation. In this work, we Investigate dynamic performances of ER engine mount with respect to the temperature variation. In order to undertake this, a flow-mode type of ER engine mount is designed and manufactured. Displacement transmissibility is experimentally and numerically evaluated as a function of the electric field. The ER engine mount is then incorporated with full-vehicle model in order to investigate vibration control performance. After formulating the governing equation of motion, a semi-active controller is designed. The controller is implemented through a hardware-in-the-loop simulation (HILS), and control responses such as acceleration level at various engine speeds are evaluated in the frequency and time domains.

  • PDF