• Title/Summary/Keyword: ENSO modulation

Search Result 5, Processing Time 0.034 seconds

Development of Nonlinear Low-Order Climate Model and Simulated ENSO Characteristics (비선형 저차 기후모델 개발과 모의된 ENSO 특징)

  • Wie, Jieun;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.7
    • /
    • pp.611-616
    • /
    • 2015
  • El Nino and Southern Oscillation (ENSO) presents a broad band (2-8 year) variability and slowly changing amplitude and period, which are respectively referred to as ENSO irregularity and ENSO modulation. In this study, we developed a nonlinear low-order climate model by combining the Lorenz-63 model of nonlinear atmospheric variability and a simple ENSO model with recharge oscillator characteristics. The model successfully reproduced the ENSO-like variations in the sea surface temperature of eastern Pacific, such as the peak period, wide periodicity, and decadal modulations. The results show that the chaotic atmospheric forcing can lead to ENSO irregularity and ENSO modulation. It is also suggested the high probability of La Nina development could be associated with strong convection of the western warm pool. Although it is simple, this model is expected to be used in research on long-term climate change because it well captures the nonlinear air-sea interactions in the equatorial Pacific.

Seasonal Gap Theory for ENSO Phase Locking

  • SOONG-KI KIM;SOON-IL AN
    • Journal of Climate Change Research
    • /
    • v.34 no.14
    • /
    • pp.5621-5634
    • /
    • 2021
  • The life cycle of El Niño-Southern Oscillation (ENSO) typically follows a seasonal march, with onset in spring, developing during summer, maturing in boreal winter, and decaying over the following spring. This feature is referred to as ENSO phase locking. Recent studies have noted that seasonal modulation of the ENSO growth rate is essential for this process. This study investigates the fundamental effect of a seasonally varying growth rate on ENSO phase locking using a modified seasonally dependent recharge oscillator model. There are two phase locking regimes associated with the strength of the seasonal modulation of growth rate: 1) a weak regime in which only a single peak occurs and 2) a strong regime in which two types of events occur either with a single peak or with a double peak. Notably, there is a seasonal gap in the strong regime, during which the ENSO peak cannot occur because of large-scale ocean-atmosphere coupled processes. We also retrieve a simple analytical solution of the seasonal variance of ENSO, revealing that the variance is governed by the time integral of seasonally varying growth rate. Based on this formulation, we propose a seasonal energy index (SEI) that explains the seasonal gap and provides an intuitive explanation for ENSO phase locking, potentially applicable to global climate model ENSO diagnostics.

The Fine Power Spectra of the Southern Oscillation Index and Its Components and their Implication

  • Lim, G.-H.;Suh, Y.-C.
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.559-568
    • /
    • 2015
  • As is evident from its definition, Southern Oscillation Index variability conformed to a combination of the variations of Darwin and Tahiti pressure. Over the El-$Ni{\tilde{n}}o$ Southern Oscillation spectra, the Darwin pressure shared variations associated with the SSN tendency while the Tahiti had a connection with the stratospheric quasi-biennial oscillation modulating annual cycle. The power peak near the 3.5-year period comprised the third harmonic of the sun and the second of the modulated annual cycle. The derived harmonics came from both sources, so the initiation of El-$Ni{\tilde{n}}o$ could be predicted more successfully when including the effects of the sun and QBO.

Solar Influence on Tropical Cyclone in Western North Pacific Ocean

  • Kim, Jung-Hee;Kim, Ki-Beom;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.257-270
    • /
    • 2017
  • Solar activity is known to be linked to changes in the Earth's weather and climate. Nonetheless, for other types of extreme weather, such as tropical cyclones (TCs), the available evidence is less conclusive. In this study the modulation of TC genesis over the western North Pacific by the solar activity is investigated, in comparison with a large-scale environmental parameter, i.e., El-$Ni{\tilde{n}}o$-Southern Oscillation (ENSO). For this purpose, we have obtained the best track data for TCs in the western North Pacific from 1977 to 2016, spanning from the solar cycle 21 to the solar cycle 24. We have confirmed that in the El-$Ni{\tilde{n}}o$ periods TCs tend to form in the southeast, reach its maximum strength in the southeast, and end its life as TSs in the northeast, compared with the La-$Ni{\tilde{n}}o$ periods. TCs occurring in the El-$Ni{\tilde{n}}o$ periods are found to last longer compared with the La-$Ni{\tilde{n}}o$ periods. Furthermore, TCs occurring in the El-$Ni{\tilde{n}}o$ periods have a lower central pressure at their maximum strength than those occurring in the La-$Ni{\tilde{n}}o$ periods. We have found that TCs occurring in the solar maximum periods resemble those in the El-$Ni{\tilde{n}}o$ periods in their properties. We have also found that TCs occurring in the solar descending periods somehow resemble those in the El-$Ni{\tilde{n}}o$ periods in their properties. To make sure that it is not due to the ENSO effect, we have excluded TCs both in the El-$Ni{\tilde{n}}o$ periods and in the La-$Ni{\tilde{n}}o$ periods from the data set and repeated the analysis. In addition to this test, we have also reiterated our analysis twice with TCs whose maximum sustained winds speed exceeds 17 m/s, instead of 33 m/s, as well as TCs designated as a typhoon, which ends up with the same conclusions.