DOI QR코드

DOI QR Code

Solar Influence on Tropical Cyclone in Western North Pacific Ocean

  • Kim, Jung-Hee (Department Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Kim, Ki-Beom (Department Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Chang, Heon-Young (Department Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Received : 2017.10.02
  • Accepted : 2017.12.07
  • Published : 2017.12.15

Abstract

Solar activity is known to be linked to changes in the Earth's weather and climate. Nonetheless, for other types of extreme weather, such as tropical cyclones (TCs), the available evidence is less conclusive. In this study the modulation of TC genesis over the western North Pacific by the solar activity is investigated, in comparison with a large-scale environmental parameter, i.e., El-$Ni{\tilde{n}}o$-Southern Oscillation (ENSO). For this purpose, we have obtained the best track data for TCs in the western North Pacific from 1977 to 2016, spanning from the solar cycle 21 to the solar cycle 24. We have confirmed that in the El-$Ni{\tilde{n}}o$ periods TCs tend to form in the southeast, reach its maximum strength in the southeast, and end its life as TSs in the northeast, compared with the La-$Ni{\tilde{n}}o$ periods. TCs occurring in the El-$Ni{\tilde{n}}o$ periods are found to last longer compared with the La-$Ni{\tilde{n}}o$ periods. Furthermore, TCs occurring in the El-$Ni{\tilde{n}}o$ periods have a lower central pressure at their maximum strength than those occurring in the La-$Ni{\tilde{n}}o$ periods. We have found that TCs occurring in the solar maximum periods resemble those in the El-$Ni{\tilde{n}}o$ periods in their properties. We have also found that TCs occurring in the solar descending periods somehow resemble those in the El-$Ni{\tilde{n}}o$ periods in their properties. To make sure that it is not due to the ENSO effect, we have excluded TCs both in the El-$Ni{\tilde{n}}o$ periods and in the La-$Ni{\tilde{n}}o$ periods from the data set and repeated the analysis. In addition to this test, we have also reiterated our analysis twice with TCs whose maximum sustained winds speed exceeds 17 m/s, instead of 33 m/s, as well as TCs designated as a typhoon, which ends up with the same conclusions.

Keywords

References

  1. Admiranto AG, Priyatikanto R, Multi-wavelength observations of two explosive events and their effects on the solar atmosphere, J. Astron. Space Sci. 33, 197-205 (2016). https://doi.org/10.5140/JASS.2016.33.3.197
  2. Artamonova I, Veretenenko S, Galactic cosmic ray variation influence on baric system dynamics at middle latitudes, J. Atmos. Sol.-Terr. Phys. 73, 366-370 (2011). https://doi.org/10.1016/j.jastp.2010.05.004
  3. Bazilevskaya GA, Usoskin IG, Fluckiger EO, Harrison RG, Desorgher L, et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev. 137, 149-173 (2008). https://doi.org/10.1007/s11214-008-9339-y
  4. Bender FAM, Ekman AML, Rodhe H, Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models, Clim. Dyn. 35, 875-886 (2010). https://doi.org/10.1007/s00382-010-0777-3
  5. Burns AG, Solomon SC, Wang W, Killeen TL, The ionospheric and thermospheric response to CMEs: challenges and successes, J. Atmos. Sol.-Terr. Phys. 69, 77-85 (2007). https://doi.org/10.1016/j.jastp.2006.06.010
  6. Burns AG, Zeng Z, Wang W, Lei J, Solomon SC, et al., Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data, J. Geophys. Res. 113, A12305 (2008). https://doi.org/10.1029/2008JA013308
  7. Camargo SJ, Sobel AH, Western North Pacific tropical cyclone intensity and ENSO, J. Clim. 18, 2996-3006 (2005). https://doi.org/10.1175/JCLI3457.1
  8. Chan JCL, Tropical cyclone activity over the western North Pacific associated with El-Nino and La Nina events, J. Clim. 13, 2960-2972 (2006). https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2
  9. Chan JCL, Liu KS, Global warming and western North Pacific typhoon activity from an observational perspective, J. Clim. 17, 4590-4602 (2004). https://doi.org/10.1175/3240.1
  10. Chang HY, Correlation of parameters characterizing the latitudinal distribution of sunspots, New Astron. 16, 456-460 (2011). https://doi.org/10.1016/j.newast.2011.04.003
  11. Chen TC, Wang SY, Yen MC, Interannual variation of the tropical cyclone activity over the western North Pacific, J. Clim. 19, 5709-5720 (2006). https://doi.org/10.1175/JCLI3934.1
  12. Cho IH, Chang HY, Long term variability of the sun and climate change, J. Astron. Space Sci. 25, 395-404 (2008). https://doi.org/10.5140/JASS.2008.25.4.395
  13. Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The global temperature anomaly and solar North-South asymmetry, Asia-Pac. J. Atmos. Sci. 48, 253-257 (2012a). https://doi.org/10.1007/s13143-012-0025-3
  14. Cho IH, Kwak YS, Marubashi K, Kim YH, Park YD, et al., Changes in sea-level pressure over South Korea associated with high-speed solar wind events, Adv. Space Res. 50, 777-782 (2012b). https://doi.org/10.1016/j.asr.2011.06.025
  15. Choi JW, Kim BJ, Zhang R, Park KJ, Kim JY, et al., Possible relation of the western North Pacific monsoon to the tropical cyclone activity over western North Pacific, Int. J. Clim. 36, 3334-3345 (2016). https://doi.org/10.1002/joc.4558
  16. Choi JW, Cha YM, Kim HD, Interdecadal variation of precipitation days in August in the Korean Peninsula, Dyn. Atmos. Oceans 77, 74-88 (2017). https://doi.org/10.1016/j.dynatmoce.2016.10.003
  17. Choi KS, Byun HR, Possible relationship between western North Pacific tropical cyclone activity and Arctic Oscillation, Theor. Appl. Clim. 100, 261-274 (2010). https://doi.org/10.1007/s00704-009-0187-9
  18. Choi KS, Moon IJ, Influence of the Western Pacific teleconnection pattern on western North Pacific tropical cyclone activity, Dyn. Atmos. Oceans 57, 1-16 (2012). https://doi.org/10.1016/j.dynatmoce.2012.04.002
  19. Damiani A, Storini M, Santee ML, Wang S, Variability of the nighttime OH layer and mesospheric ozone at high latitudes during northern winter: influence of meteorology, Atmos. Chem. Phys. 10, 10291-10303 (2010). https://doi.org/10.5194/acp-10-10291-2010
  20. Elsner JB, Jagger TH, United States and Caribbean tropical cyclone activity related to the solar cycle, Geophys. Res. Lett. 35, L18705 (2008). https://doi.org/10.1029/2008GL034431
  21. Elsner JB, Jagger TH, Hodges RE, Daily tropical cyclone intensity response to solar ultraviolet radiation, Geophys. Res. Lett. 37, L09701 (2010). https://doi.org/10.1029/2010GL043091
  22. Emanuel K, Increasing destructiveness of tropical cyclones over the past 30 years, Nature 436, 686-688 (2005). https://doi.org/10.1038/nature03906
  23. Friis-Christensen E, Lassen K, Length of the solar cycle: An indicator of solar activity closely associated with climate, Science 254, 698-700 (1991). https://doi.org/10.1126/science.254.5032.698
  24. Funke B, Baumgaertner A, Calisto M, Egorova T, Jackman CH, et al., Composition changes after the "Halloween" solar proton event: the high energy particle precipitation in the atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys. 11, 9089-9139 (2011). https://doi.org/10.5194/acp-11-9089-2011
  25. Garcia RR, Solomon S, Roble RG, Rusch DW, A numerical response of the middle atmosphere to the 11-year solar cycle, Planet. Space Sci. 32, 411-423 (1984). https://doi.org/10.1016/0032-0633(84)90121-1
  26. Gleixner S, Keenlyside N, Hodges KI, Tseng WL, Bengtsson L, An inter-hemispheric comparison of the tropical storm response to global warming, Clim. Dyn. 42, 2147-2157 (2014). https://doi.org/10.1007/s00382-013-1914-6
  27. Goh AZC, Chan JCL, Variations and prediction of the annual number of tropical cyclones affecting Korea and Japan, Int. J. Clim. 32, 178-189 (2012). https://doi.org/10.1002/joc.2258
  28. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al., Solar influences on climate, Rev. Geophys. 48, RG4001 (2010). https://doi.org/10.1029/2009RG000282
  29. Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, et al., A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns, J. Geophys. Res. 118, 13405-13420 (2013). https://doi.org/10.1002/2013JD020062
  30. Gray LJ, Ball W, Misios S, Solar influences on climate over the Atlantic/European sector, AIP Conf. Proc. 1810, 020002 (2017). https://doi.org/10.1063/1.4975498
  31. Gray WM, The formation of tropical cyclones, Meteorol. Atmos. Phys. 67, 37-69 (1998). https://doi.org/10.1007/BF01277501
  32. Gualdi S, Scoccimarro E, Navarra A, Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model, J. Clim. 21, 5204-5228 (2008). https://doi.org/10.1175/2008JCLI1921.1
  33. Haam E, Tung KK, Statistics of solar cycle-La Nina connection: correlation of two autocorrelated time series, J. Atmos. Sci. 69, 2934-2939 (2012). https://doi.org/10.1175/JAS-D-12-0101.1
  34. Haigh JD, The Sun and the Earth's climate, Living Rev. Sol. Phys. 4, 2 (2007). https://doi.org/10.12942/lrsp-2007-2
  35. Ho CH, Kim HS, Jeong JH, Son SW, Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific, Geophys. Res. Lett. 36, L06702 (2009). https://doi.org/10.1029/2009GL037163
  36. Jackman CH, DeLand MT, Labow GJ, Fleming EL, Weisenstein DK, et al., Neutral atmospheric influences of the solar proton events in October-November 2003, J. Geophys. Res. 110, A09S27 (2005). https://doi.org/10.1029/2004JA010888
  37. Jo Y, Chang HY, Revisiting the correlations of peak luminosity with spectral lag and peak energy of the observed gammaray bursts, J. Astron. Space Sci. 33, 247-256 (2016). http://doi.org/10.5140/JASS.2016.33.4.247
  38. Karakhanyan AA, Molodyk SI, Evolution of extratropical cyclones during disturbed geomagnetic conditions, Geomagn. Aeron. 57, 535-540 (2017). https://doi.org/10.1134/S0016793217050115
  39. Kavlakov SP, Global cosmic ray intensity changes, solar activity variations and geomagnetic disturbances as North Atlantic hurricane precursors, Int. J. Mod. Phys. A 20, 6699 (2005). https://doi.org/10.1142/S0217751X0502985X
  40. Kim JH, Chang HY, Statistical properties of geomagnetic activity indices and solar wind parameters, J. Astron. Space Sci. 31, 149-157 (2014a). https://doi.org/10.5140/JASS.2014.31.2.149
  41. Kim JH, Chang HY, Spectral analysis of geomagnetic activity indices and solar wind parameters, J. Astron. Space Sci. 31, 159-167 (2014b). https://doi.org/10.5140/JASS.2014.31.2.159
  42. Kniveton DR, Tinsley BA, Burns GB, Bering EA, Troshichev OA, Variations in global cloud cover and the fair-weather vertical electric field, J. Atmos. Sol.-Terr. Phys. 70, 1633-1642 (2008). https://doi.org/10.1016/j.jastp.2008.07.001
  43. Kossin JP, Emanuel KA, Vecchi GA, The poleward migration of the location of tropical cyclone maximum intensity, Nature 509, 349-352 (2014). https://doi.org/10.1038/nature13278
  44. Kossin JP, Emanuel KA, Camargo SJ, Past and projected changes in western North Pacific tropical cyclone exposure, J. Clim. 29, 5725-5739 (2016). https://doi.org/10.1175/JCLID-16-0076.1
  45. Labitzke K, Sunspots, the QBO, and the stratospheric temperature in the north polar region, Geophys. Res. Lett. 14, 535-537 (1987). https://doi.org/10.1029/GL014i005p00535
  46. Labitzke K, van Loon H, Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and stratosphere in the northern hemisphere in winter, J. Atmos. Terr. Phys. 50, 197-206 (1988). https://doi.org/10.1016/0021-9169(88)90068-2
  47. Lam MM, Chisham G, Freeman MP, The interplanetary magnetic field influences mid-latitude surface atmospheric pressure, Environ. Res. Lett. 8, 045001 (2013). https://doi.org/10.1088/1748-9326/8/4/045001
  48. Lander MA, An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO, Mon. Weather Rev. 122, 636-651 (1994). https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2
  49. Larson J, Zhou Y, Higgins RW, Characteristics of landfalling tropical cyclones in the United States and Mexico: climatology and interannual variability, J. Clim. 18, 1247-1262 (2005). https://doi.org/10.1175/JCLI3317.1
  50. Lee CY, Tippett MK, Sobel AH, Camargo SJ, Rapid intensification and the bimodal distribution of tropical cyclone intensity, Nature Commun. 7, 10625 (2016). https://doi.org/10.1038/ncomms10625
  51. Lee EH, Lee DY, Park MY, Kim S, Park SJ, Holocene climate variability on the centennial and millennial time scale, J. Astron. Space Sci. 31, 335-340 (2014). https://doi.org/10.5140/JASS.2014.31.4.335
  52. Lee HS, Yamashita T, Mishima T, Multi-decadal variations of ENSO, the pacific decadal oscillation and tropical cyclones in the western North Pacific, Prog. Ocean. 105, 67-80 (2012). https://doi.org/10.1016/j.pocean.2012.04.009
  53. Lee S, Yi Y, Abnormal winter melting of the Arctic sea ice cap observed by the spaceborne passive microwave sensors, J. Astron. Space Sci. 33, 305-311 (2016). https://doi.org/10.5140/JASS.2016.33.4.305
  54. Liebmann B, Hendon HH, Glick JD, The relationship between tropical cyclones of the Western Pacific and Indian Oceans and the Madden-Julian Oscillation, J. Meteorol. Soc. Japan 72, 401-412 (1994). https://doi.org/10.2151/jmsj1965.72.3_401
  55. MacDonald GM, Case RA, Variations in the pacific decadal oscillation over the past millennium, Geophys. Res. Lett. 32, L08703 (2005). https://doi.org/10.1029/2005GL022478
  56. Marsh N, Svensmark H, Cosmic rays, clouds, and climate, Space Sci. Rev. 94, 215-230 (2000). https://doi.org/10.1023/A:1026723423896
  57. Mazzarella A, Palumbo F, Rainfall fluctuations over Italy and their association with solar activity, Theor. Appl. Clim. 45, 201-207 (1992). https://doi.org/10.1007/BF00866193
  58. McBride JL, Zehr R, Observational analysis of tropical cyclone formation. Part II: comparison of non-developing versus developing systems, J. Atmos. Sci. 38, 1132-1151 (1981). https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2
  59. Meehl GA, Arblaster JM, Branstator G, van Loon H, Coupled air-sea response mechanism to solar forcing in the Pacific region, J. Clim. 21, 2883-2897 (2008). https://doi.org/10.1175/2007JCLI1776.1
  60. Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H, Amplifying the Pacific climate system response to a small 11 year solar cycle forcing, Science 325, 1114-1118 (2009). https://doi.org/10.1126/science.1172872
  61. Mironova IA, Usoskin IG, Possible effect of extreme solar energetic particle events of September-October 1989 on polar stratospheric aerosols: a case study, Atmos. Chem. Phys. 13, 8543-8550 (2013). https://doi.org/10.5194/acp-13-8543-2013
  62. Mironova IA, Usoskin IG, Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results, Environ. Res. Lett. 9, 015002 (2014). https://doi.org/10.1088/1748-9326/9/1/015002
  63. Mironova IA, Usoskin IG, Kovaltsov GA, Petelina SV, Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence, Atmos. Chem. Phys. 12, 769-778 (2012). https://doi.org/10.5194/acp-12-769-2012
  64. Moon GH, Ha KY, Kang SH, Lee BH, Kim KB, et al., Acidity in precipitation and solar north-south asymmetry, J. Astron. Space Sci. 31, 325-333 (2014). https://doi.org/10.5140/JASS.2014.31.4.325
  65. Na SH, Cho J, Kim, TH, Seo K, Youm K, et al., Changes in the Earth's spin rotation due to the atmospheric effects and reduction in glaciers, J. Astron. Space Sci. 33, 295-304 (2016). https://doi.org/10.5140/JASS.2016.33.4.295
  66. Nakano M, Sawada M, Nasuno T, Satoh M, Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model, Geophys. Res. Lett. 42, 565-571 (2015). https://doi.org/10.1002/2014GL062479
  67. Nakano S, Ito K, Suzuki K, Ueno G, Decadal-scale meridional shift of the typhoon recurvature latitude over five decades, Int. J. Clim. 36, 3819-3827 (2016). https://doi.org/10.1002/joc.4595
  68. Nakazawa T, Madden-Julian oscillation activity and typhoon landfall on Japan in 2004, SOLA 2, 136-139 (2006). https://doi.org/10.2151/sola.2006-035
  69. Ney ER, Cosmic radiation and the weather, Nature 183, 451-452 (1959). https://doi.org/10.1038/183451a0
  70. Oey LY, Chou S, Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades, J. Geophys. Res. 121, 5181-5192 (2016). https://doi.org/10.1002/2016JC011777
  71. Ogurtsov MG, Jungner H, Kocharov GE, Lindholm M, Eronen M, Nitrate concentration in Greenland ice: an indicator of changes in fluxes of solar and galactic high-energy particles, Sol. Phys. 222, 177-190 (2004). https://doi.org/10.1023/B:SOLA.0000036855.04018.06
  72. Park JH, Chang HY, Drought over Seoul and its association with solar cycles, J. Astron. Space Sci. 30, 241-246 (2013). https://doi.org/10.5140/JASS.2013.30.4.241
  73. Peng MS, Fu B, Li T, Stevens DE, Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic, Mon. Weather Rev. 140, 1047-1066 (2012). https://doi.org/10.1175/2011MWR3617.1
  74. Perez-Peraza J, Kavlakov S, Velasco V, Gallegos-Cruz A, Azpra-Romero E, et al., Solar, geomagnetic and cosmic ray intensity changes, preceding the cyclone appearances around Mexico, Adv. Space Res. 42, 1601-1613 (2008). https://doi.org/10.1016/j.asr.2007.12.004
  75. Pudovkin MI, Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron. 5, GI2007 (2004).
  76. Pudovkin MI, Veretenenko SV, Pellinen R, Kyro E, Meteorological characteristic changes in the high-latitudinal atmosphere associated with Forbush decreases of the galactic cosmic rays, Adv. Space Res. 20, 1169-1172 (1997). https://doi.org/10.1016/S0273-1177(97)00767-9
  77. Reid GC, Solar variability and the Earth's climate: introduction and overview, Space Sci. Rev. 94, 1-11 (2000). https://doi.org/10.1023/A:1026797127105
  78. Reid GC, Solomon S, Garcia RR, Response of the middle atmosphere to the solar proton events of August-December, 1989, Geophys. Res. Lett. 18, 1019-1022 (1991). https://doi.org/10.1029/91GL01049
  79. Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys. 66, 1143-1149 (2004). https://doi.org/10.1016/j.jastp.2004.05.006
  80. Roy I, Haigh JD, Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys. 10, 3147-3153 (2010). https://doi.org/10.5194/acp-10-3147-2010
  81. Roy I, Haigh JD, Solar cycle signals in the pacific and the issue of timings, J. Atmos. Sci. 69, 1446-1451 (2012). https://doi.org/10.1175/JAS-D-11-0277.1
  82. Sagir S, Karatay S, Atici R, Yesil A, Ozcan O, The relationship between the quasi biennial oscillation and sunspot number, Adv. Space Res. 55, 106-112 (2015). https://doi.org/10.1016/j.asr.2014.09.035
  83. Saunders MA, Chandler RE, Merchant CJ , Roberts FP, Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall, Geophys. Res. Lett. 27, 1147-1150 (2000). https://doi.org/10.1029/1999GL010948
  84. Scafetta N, West BJ, Phenomenological solar contribution to the 1900-2000 global surface warming, Geophys. Res. Lett. 33, L05708 (2006). https://doi.org/10.1029/2005GL025539
  85. Scoccimarro E, Gualdi S, Villarini G, Vecchi GA, Zhao M, et al., Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2, J. Clim. 27, 4642-4654 (2014). https://doi.org/10.1175/JCLI-D-14-00065.1
  86. Shen W, Tuleya RE, Ginis I, A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming, J. Clim. 13, 109-121 (2000). https://doi.org/10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2
  87. Sinnhuber M, Nieder H, Wieters N, Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere, Surv. Geophys. 33, 1281-1334 (2012). https://doi.org/10.1007/s10712-012-9201-3
  88. Sobel AH, Camargo SJ, Hall TM, Lee CY, Tippett MK, et al., Human influence on tropical cyclone intensity, Science 353, 242-246 (2016). https://doi.org/10.1126/science.aaf6574
  89. Storini M, Damiani A, Effects of the January 2005 GLE/SPE events on minor atmospheric components, Proc. 30th Int. Cosmic Ray Conf. 1, 277-280 (2008).
  90. Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys. 59, 1225-1232 (1997). https://doi.org/10.1016/S1364-6826(97)00001-1
  91. Tinsley BA, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev. 94, 231-258 (2000). https://doi.org/10.1023/A:1026775408875
  92. Tinsley BA, Deen GW, Apparent tropospheric response to MeV-GeV particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds?, J. Geophys. Res. 96, 22283-22296 (1991). https://doi.org/10.1029/91JD02473
  93. Tinsley BA, Heelis RA, Correlations of atmospheric dynamics with solar activity evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics, J. Geophys. Res. 98, 10375-10384 (1993). https://doi.org/10.1029/93JD00627
  94. Trenberth K, Uncertainty in hurricanes and global warming, Science 308, 1753-1754 (2005). https://doi.org/10.1126/science.1112551
  95. Van Loon H, Meehl GA, The response in the pacific to the sun's decadal peaks and contrasts to cold events in the southern oscillation, J. Atmos. Sol.-Terr. Phys. 70, 1046-1055 (2008). https://doi.org/10.1016/j.jastp.2008.01.009
  96. Van Loon H, Meehl GA, Shea DJ, Coupled air-sea response to solar forcing in the pacific region during northern winter, J. Geophys. Res. 112, D02108 (2007). https://doi.org/10.1029/2006JD007378
  97. Veretenenko S, Thejll P, Effects of energetic solar proton events on the cyclone development in the North Atlantic, J. Atmos. Sol.-Terr. Phys. 66, 393-405 (2004). https://doi.org/10.1016/j.jastp.2003.11.005
  98. Vitt FM, Jackman CH, A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth's middle atmosphere as calculated using a two-dimensional model, J. Geophys. Res. 101, 6729-6739 (1996). https://doi.org/10.1029/95JD03386
  99. Vitt FM, Cravens TE, Jackman CH, A two-dimensional model of thermospheric nitric oxide sources and their contributions to the middle atmospheric chemical balance, J. Atmos. Sol.-Terr. Phys. 62, 653-667 (2000). https://doi.org/10.1016/S1364-6826(00)00049-3
  100. Wang B, Chan JCL, How strong ENSO events affect tropical storm activity over the western North Pacific, J. Clim. 15, 1643-1658 (2002). https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
  101. Wang SY, Gillies RR, Jin J, Hipps LE, Coherence between the Great Salt Lake level and the pacific quasi-decadal oscillation, J. Clim. 23, 2161-2177 (2010). https://doi.org/10.1175/2009JCLI2979.1
  102. Webster PJ, Holland GJ, Curry JA, Chang HR, Changes in tropical cyclone number, duration, and intensity in a warming environment, Science 309, 1844-1846 (2005). https://doi.org/10.1126/science.1116448
  103. Wu L, Wang C, Wang B, Westward shift of western North Pacific tropical cyclogenesis, Geophys. Res. Lett. 42, 1537-1542 (2015). https://doi.org/10.1002/2015GL063450
  104. Xie L, Yan T, Pietrafesa LJ, Morrison JM, Karl T, Climatology and interannual variability of North Atlantic hurricane tracks, J. Clim. 18, 5370-5381 (2005). https://doi.org/10.1175/JCLI3560.1
  105. Yamada Y, Oouchi K, Satoh M, Tomita H, Yanase W, Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach, Geophys. Res. Lett. 37, L07709 (2010). https://doi.org/10.1029/2010GL042518
  106. Yan Y, Qi Y, Zhou W, Variability of tropical cyclone occurrence date in the South China Sea and its relationship with SST warming, Dyn. Atmos. Oceans 55-56, 45-59 (2012). https://doi.org/10.1016/j.dynatmoce.2012.05.001
  107. Yang TY, Kwak YS, Kim YH, Statistical comparison of gravity wave characteristics obtained from airglow all-sky observation at Mt. Bohyun, Korea and Shigaraki, Japan, J. Astron. Space Sci. 32, 327-333 (2015). https://doi.org/10.5140/JASS.2015.32.4.327
  108. Yoshida R, Ishikawa H, Environmental factors contributing to tropical cyclone genesis over the western North Pacific, Mon. Weather Rev. 141, 451-467 (2013). https://doi.org/10.1175/MWR-D-11-00309.1
  109. Yoshimura H, Matsumura T, A two-time-level vertically-conservative semi-Lagrangian semi-implicit double Fourier series AGCM, CAS/JSC WGNE Res. Act. Atmos. Ocean Model. 35, 27-28 (2005).
  110. Yu B, Lin H, Tropical atmospheric forcing of the wintertime North Atlantic oscillation, J. Clim. 29, 1755-1772 (2016). https://doi.org/10.1175/JCLI-D-15-0583.1
  111. Zhang W, Graf HF, Leung Y, Herzog M, Different El-Nino types and tropical cyclone landfall in East Asia, J. Clim. 25, 6510-6523 (2012). https://doi.org/10.1175/JCLI-D-11-00488.1
  112. Zhao H, Yoshida R, Raga GB, Impact of the Madden-Julian oscillation on western North Pacific tropical cyclogenesis associated with large-scale patterns, J. Appl. Meteorol. Clim. 54, 1413-1429 (2015). https://doi.org/10.1175/JAMC-D-14-0254.1
  113. Zhao M, Held IM, Lin SJ, Vecchi GA, Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM, J. Clim. 22, 6653-6678 (2009). https://doi.org/10.1175/2009JCLI3049.1
  114. Zhou BT, Cui X, Interdecadal change of the linkage between the North Atlantic oscillation and the tropical cyclone frequency over the western North Pacific, Sci. China Earth Sci. 57, 2148-2155 (2014). https://doi.org/10.1007/s11430-014-4862-z
  115. Zhou J, Tung KK, Solar cycles in 150 years of global sea surface temperature data, J. Clim. 23, 3234-3248 (2010). https://doi.org/10.1175/2010JCLI3232.1
  116. Zhou L, Tinsley B, Chu H, Xiao Z, Correlations of global sea surface temperatures with the solar wind speed, J. Atmos. Sol.-Terr. Phys. 149, 232-239 (2016). https://doi.org/10.1016/j.jastp.2016.02.010