DOI QR코드

DOI QR Code

Development of Nonlinear Low-Order Climate Model and Simulated ENSO Characteristics

비선형 저차 기후모델 개발과 모의된 ENSO 특징

  • Wie, Jieun (Division of Science Education/Institute of Fusion Science, Chonbuk National University) ;
  • Moon, Byung-Kwon (Division of Science Education/Institute of Fusion Science, Chonbuk National University)
  • 위지은 (전북대학교 과학교육학부/융합과학연구소) ;
  • 문병권 (전북대학교 과학교육학부/융합과학연구소)
  • Received : 2015.11.05
  • Accepted : 2015.12.09
  • Published : 2015.12.31

Abstract

El Nino and Southern Oscillation (ENSO) presents a broad band (2-8 year) variability and slowly changing amplitude and period, which are respectively referred to as ENSO irregularity and ENSO modulation. In this study, we developed a nonlinear low-order climate model by combining the Lorenz-63 model of nonlinear atmospheric variability and a simple ENSO model with recharge oscillator characteristics. The model successfully reproduced the ENSO-like variations in the sea surface temperature of eastern Pacific, such as the peak period, wide periodicity, and decadal modulations. The results show that the chaotic atmospheric forcing can lead to ENSO irregularity and ENSO modulation. It is also suggested the high probability of La Nina development could be associated with strong convection of the western warm pool. Although it is simple, this model is expected to be used in research on long-term climate change because it well captures the nonlinear air-sea interactions in the equatorial Pacific.

엘니뇨와 남방진동(엔소)은 변동 주기가 2-8년으로 넓게 걸쳐있으며 그 진폭과 주기 또한 천천히 변하는데 이런 특징을 각각 엔소 불규칙성과 엔소 변조라 한다. 이 연구는 비선형 대기 변동성을 나타나는 Lorenz-63 모형과 간단한 충전 진동자 모형을 결합함으로써 비선형 저차 기후모델을 개발하였다. 이 모델은 동태평양의 해수면 온도 변동의 중심주기, 넓은 주기성, 강도의 수십 년 변동 등과 같은 관측에서 보이는 엔소 특징을 잘 재현하였다. 이것은 대기 카오스 강제력이 엔소의 불규칙성과 변조를 이끌 수 있음을 보여준다. 덧붙여 모델은 서태평양 온난역의 대류활동이 강해지면 라니냐 발생 가능성이 높아지는 것을 제시하였다. 이 모델은 간단하면서도 적도 태평양의 대기-해양 비선형 상호작용을 잘 모사하고 있기에 향후 장기 기후변화 연구에 활동될 것으로 기대된다.

Keywords

References

  1. Alexander, M.A., Blade, I., Newman, M., Lanzante, J.R., Lau, N.C., and Scott, J.D., 2002, The atmospheric bridge: The influence of ENSO teleconnections on airsea interaction over the global oceans. Journal of Climate, 15, 2205-2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
  2. Blanke, B., Neelin, J.D., and Gutzler, D., 1997, Estimating the effect of stochastic wind stress forcing on ENSO irregularity. Journal of Climate, 10, 1473-1486. https://doi.org/10.1175/1520-0442(1997)010<1473:ETEOSW>2.0.CO;2
  3. Cha, E.J., 2007, El Nino-Southern Oscillation, Indian Ocean Dipole Mode, a relationship between the two phenomena, and their impact on the climate over the Korean Peninsular. Journal of Korean Earth Science Society, 28, 35-44. https://doi.org/10.5467/JKESS.2007.28.1.035
  4. Fedorov, A.V. and Philander, S.G., 2000, Is El Nino changing? Science, 288, 1997-2002. https://doi.org/10.1126/science.288.5473.1997
  5. Gu, D.F. and Philander, S.G.H., 1995, Secular changes of annual and interannual variability in the tropics during the past century. Journal of Climate, 8, 864-876. https://doi.org/10.1175/1520-0442(1995)008<0864:SCOAAI>2.0.CO;2
  6. Jang, S.R. and Ha, K.J., 2008, On the relationship between typhoon intensity and formation region: Effect of developing and decaying ENSO. Journal of Korean Earth Science Society, 29, 29-44. https://doi.org/10.5467/JKESS.2008.29.1.029
  7. Ji, M., Leetmaa, A., and Kousky, V.E., 1996, Coupled model predictions of ENSO during the 1980s and the 1990s at the national centers for environmental prediction. Journal of Climate, 9, 3105-3120. https://doi.org/10.1175/1520-0442(1996)009<3105:CMPOED>2.0.CO;2
  8. Jin, F.F., 1997, An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. Journal of the Atmospheric Sciences, 54, 811-829. https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
  9. Jin, F.F., Lin, L., Timmermann, A., and Zhao, J., 2007, Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophysical Research Letters, 34, L03807, doi:10.1029/2006GL027372.
  10. Kirtman, B.P. and Schopf, P.S., 1998, Decadal variability in ENSO predictability and prediction. Journal of Climate, 11, 2804-2822. https://doi.org/10.1175/1520-0442(1998)011<2804:DVIEPA>2.0.CO;2
  11. Kleeman, R. and Power, S.B., 1994, Limits to predictability in a coupled ocean-atmosphere model due to atmospheric noise. Tellus A, 46, 529-540. https://doi.org/10.1034/j.1600-0870.1994.00014.x
  12. Lorenz, E.N., 1963, Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  13. McPhaden, M.J., 1999, Genesis and evolution of the 1997-98 El Nino. Science, 283, 950-954. https://doi.org/10.1126/science.283.5404.950
  14. McPhaden, M.J., Zebiak, S.E., and Glantz, M.H., 2006, ENSO as an integrating concept in earth science. Science, 314, 1740-1745. https://doi.org/10.1126/science.1132588
  15. Moon, B.K., 2007, Characteristics of the simulated ENSO in a CGCM. Journal of Korean Earth Science Society, 28, 343-356. (in Korean) https://doi.org/10.5467/JKESS.2007.28.3.343
  16. Munnich, M., Cane, M.A., and Zebiak, S.E., 1991, A study of self-excited oscillations of the tropical ocean atmosphere system. Part II: Nonlinear cases. Journal of the Atmospheric Sciences, 48, 1238-1248. https://doi.org/10.1175/1520-0469(1991)048<1238:ASOSEO>2.0.CO;2
  17. Neelin, J.D., Battisti, D.S., Hirst, A.C., Jin, F.F., Wakata, Y., Yamagata, T., and Zebiak, S.E., 1998, ENSO theory. Journal of Geophysical Research-Oceans, 103, 14261-14290. https://doi.org/10.1029/97JC03424
  18. Spencer, R.W. and Braswell, W.D., 2014, The role of ENSO in global ocean temperature changes during 1955-2011 simulated with a 1D climate model. Asia-Pacific Journal of Atmospheric Sciences, 50, 229-237. https://doi.org/10.1007/s13143-014-0011-z
  19. Timmermann, A., Jin, F.F., and Abshagen, J., 2003, A nonlinear theory for El Nino bursting. Journal of the Atmospheric Sciences, 60, 152-165. https://doi.org/10.1175/1520-0469(2003)060<0152:ANTFEN>2.0.CO;2
  20. Torrence, C. and Compo, G.P., 1998, A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  21. Tziperman, E., Cane, M.A., and Zebiak, S.E., 1995, Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasiperiodicity route to chaos. Journal of the Atmospheric Sciences, 52, 293-306. https://doi.org/10.1175/1520-0469(1995)052<0293:IALTTS>2.0.CO;2
  22. Wang, B. and Wang, Y., 1996, Temporal structure of the Southern Oscillation as revealed by waveform and wavelet analysis. Journal of Climate, 9, 1586-1598. https://doi.org/10.1175/1520-0442(1996)009<1586:TSOTSO>2.0.CO;2
  23. Wittenberg, A.T., Rosati, A., Delworth, T.L., Vecchi, G.A., and Zeng, F.R., 2014, ENSO modulation: Is it decadally predictable? Journal of Climate, 27, 2667-2681. https://doi.org/10.1175/JCLI-D-13-00577.1
  24. Yeh, S.W., Kug, J.S., and An, S.I., 2014, Recent progress on two types of El Nino: Observations, dynamics, and future changes. Asia-Pacific Journal of Atmospheric Sciences, 50, 69-81. https://doi.org/10.1007/s13143-014-0028-3
  25. Yoshida, S., Morimoto, T., Ushio, T., and Kawasaki, Z., 2007, ENSO and convective activities in Southeast Asia and western Pacific. Geophysical Research Letters, 34, L21806, doi:10.1029/2007GL030758.