• Title/Summary/Keyword: EMI Problems

Search Result 91, Processing Time 0.024 seconds

Hybrid Carbon Nanomaterials for Electromagnetic Interference Shielding (전자파 차폐용 하이브리드 탄소나노물질)

  • Lee, Si-Hwa;Oh, Il-Kwon
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.138-144
    • /
    • 2016
  • Recently, electromagnetic interference (EMI) shielding materials have been extensively developed and significantly considered to protect electronic systems from harmful electromagnetic waves. Although, metal-based materials show high electrical conductivity and EMI shielding effectiveness, they have several challenging problems such as high density and corrosion. Carbon-based materials have been acclaimed as alternative EMI materials due to light weight, high mechanical properties, resistance to corrosion and excellent electrical conductivity. Here, we introduce 1-phase and 2-phase carbon materials as well as 3-phase hybrid carbon materials. The 3-phase hybrid carbon materials composed of metal nanoparticles, carbon nanotubes and graphene can be used as a promising EMI shielding material.

Analysis of EMI Problems in Split Power Distribution Network

  • Shim, Hwang-Yoon;Kim, Ji-Seong;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • Signal integrity problems and their possible solutions are addressed in this paper for split power plane of high-speed digital systems. Stitching and decoupling capacitors are proved to be very effective for reducing signal noise, ground bounce as well as electromagnetic radiation from the split power plane. Simulations based on 3D-Finite Difference Time Domain (FDTD) method are utilized for the analysis of practical high frequency multi-layered PC main board.

EMI Noise Source Reduction of Single-Ended Isolated Converters Using Secondary Resonance Technique

  • Chen, Zhangyong;Chen, Yong;Chen, Qiang;Jiang, Wei;Zhong, Rongqiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.403-412
    • /
    • 2019
  • Aiming at the problems of large dv/dt and di/dt in traditional single-ended converters and high electromagnetic interference (EMI) noise levels, a single-ended isolated converter using the secondary resonance technique is proposed in this paper. In the proposed converter, the voltage stress of the main power switch can be reduced and the voltage across the output diode is clamped to the output voltage when compared to the conventional flyback converter. In addition, the peak current stress through the main power switch can be decreased and zero current switching (ZCS) of the output diode can be achieved through the resonance technique. Moreover, the EMI noise coupling path and an equivalent model of the proposed converter topology are presented through the operational principle of the proposed converter. Analysis results indicate that the common mode (CM) EMI noise and the differential mode (DM) EMI noise of such a converter are deduced since the frequency spectra of the equivalent controlled voltage sources and controlled current source are decreased when compared with the traditional flyback converter. Furthermore, appropriate parameter selection of the resonant circuit network can increase the equivalent impedance in the EMI coupling path in the low frequency range, which further reduces the common mode interference. Finally, a simulation model and a 60W experimental prototype of the proposed converter are built and tested. Experimental results verify the theoretical analysis.

An Optimal Random Carrier Pulse Width Modulation Technique Based on a Genetic Algorithm

  • Xu, Jie;Nie, Zi-Ling;Zhu, Jun-Jie
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.380-388
    • /
    • 2017
  • Since the carrier sequence is not reproducible in a period of the random carrier pulse width modulation (RCPWM) and a higher harmonic spectrum amplitude is likely to affect the quality of the power supply. In addition, electromagnetic interference (EMI) and mechanical vibration will appear. To solve these problems, this paper has proposed an optimal RCPWM based on a genetic algorithm (GA). In the optimal modulation, the range of the random carrier frequency is taken as a constraint and the reciprocal of the maximum harmonic spectrum amplitude is used as a fitness function to decrease the EMI and mechanical vibration caused by the harmonics concentrated at the carrier frequency and its multiples. Since the problems of the hardware make it difficult to use in practical engineering, this paper has presented a hardware system. Simulations and experiments show that the RCPWM is effective. Studies show that the harmonic spectrum is distributed more uniformly in the frequency domain and that there is no obvious peak in the wave spectra. The proposed method is of great value to research on RCPWM and integrated power systems (IPS).

PI(Power Integrity)를 이용한 EMI 개선

  • Lee, Suk-Yeun;Chung, Ki-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1195-1196
    • /
    • 2008
  • It is difficult to solve PCB(Printed Circuit Board) Noise problem. Because Electronic circuit system operates very high frequency. Resonance analysis of PCB layout by PI(Power Integrity) Simulation method visualizes distribution of Switching noise between VDD and GND. By using de-cap, we reduce impedance and solve the EMI problems.

  • PDF

Broad-Band Design of Ferrite One-body EM Wave Absorbers for an Anechoic Chamber

  • Kim, Dong-Il;Son, June-Young;Park, Woo-Keun;Park, Dong-Han
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.51-55
    • /
    • 2004
  • With the progress of the electronics industry and radio communication technology, certain problems, such as electromagnetic interference(EMI), have arisen due to the increased use of electromagnetic(EM) waves. International organizations such as CISPR, FCC, and ANSI have provided the standards for the EM wave environment and for the countermeasure of the electromagnetic compatibility(EMC). EM wave absorbers are used for constructing an anechoic chamber to test and measure EMI and electromagnetic susceptibility(EMS). In this paper, we have designed an one-body EM(electromagnetic) wave ferrite absorber, based on the equivalent material constants method for both normally and obliquely incident waves, whose absorption abilities are superior to that of the conventional ones. The fabricated absorber has a thickness of 27.68 mm and shows an absorption ability over 20 ㏈ in the frequency from 30 MHz to 6 ㎓.

Design of a Biconical Antenna with Cylindrical Loads for EMI Test Site Validation above 1 GHz

  • Kong, Sung-Sik;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, a biconical type antenna is proposed for EMI test site validation above 1 GHz. To achieve broadband and omni-directional radiation patterns required by international standard(CISPR), the proposed antenna consists of general bicones with cylindrical loads and adopts side feeding method to minimize the influence on H-plane pattern due to feeding cable, balun, and connector. The radiation patterns of the fabricated antenna are measured and the results are compared with CISPR criteria and commercial antenna in our interest frequencies. Although the proposed antenna has a few problems in frequency range of 1 GHz to 2 GHz, it has relatively better performance than commercial antenna.

A Study on the Evaluation of Semi-Anechoic Chamber Characteristics (전파반무향실의 특성평가에 관한 연구)

  • 김민석;김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.4
    • /
    • pp.29-38
    • /
    • 1997
  • Because of the result of a large use of electronic equipments, the occupation density of microwave frequency band is highly increased, and electromagnetic environment is getting more seriously bad. It is sometimes reported that electronic machines are not normally operated on account of the influence of undesired electromagnetic wave, which often gives fatal blow to even human life and thus becomes serious social problems. OATS(Open Area Test Site) is principally used to measure EMI or examine elelctromagnetic emission. Because of various restrictions we often build semi-anechoic chamber which has the function of OATS to measure EMI or EMS other than OATS. If the difference of the site attenuation between semi-anechoic chamber and OATS is within ${\pm}3dB$, the semi-anechoic chamber is recognized as adequate facility to measure EMI or EMS. Accordingly authors evaluate and analyze site attenuation due to absorbent materials, polarization, mutual coupling effects, etc. The calculated and the measured site attenuation in semi-anechoic chamber are compared. As a result good agreement is obtained.

  • PDF

Research Trends of Carbon Composite Film with Electromagnetic Interference Shielding and High Heat Dissipation (탄소 복합재 기반 전자파 차폐 및 고방열 일체형 필름 연구동향)

  • Park, Seong-Hyun;Kim, Myounghun;Kim, Kwang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, electronic components are becoming smaller and highly integrated. As a result, electromagnetic interference (EMI) and heat generation problems must be solved simultaneously with a small area and thickness. Graphene composites and graphite composites are lightweight materials that can simultaneously solve EMI shielding and heat dissipation problems with excellent electrical and thermal conductivity. With the recent development of synthetic technology and composite manufacturing technology, the research to application of their composites is increasing. In this paper, we reviewed the latest researches on composite films of graphene and graphite for EMI shielding and heat dissipation.

Fabrication and Evaluation of Broad-Band Ferrite EM-wave Absorber (광대역 페라이트 전파흡수체의 제작과 평가에 관한 연구)

  • 손준영;배재영;원영수;송재만;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.244-248
    • /
    • 2001
  • According to the progress of the electronic industry and radio communication technologies, mankind might enjoy its abundant life. On the other hand, many social problems such as EMI, and unnecessary electromagnetic wave occur due to the increased use of electromagnetic wave. Therefore, the organizations such as CISPR, FCC, ANSI, etc. have provided the standard of electromagnetic wave environment for the countermeasure of the EMC. It had been required that the absorbing ability of an electromagnetic wave absorber is more than 20dB, the bandwidth of which is required through 30 MHz to 1,000 MHz for satisfying the international standard about an anechoic chamber for EMI/EMS measurement. From November of 1998, however, the CISPR11 has accepted the extended frequency band from 1 GHz to 18 GHz additionally in the bandwidth of EMI measurement[1]. In this paper, we proposed a new type absorber satisfying the above requirements and carried out broadband design using the equivalent material constants method. Futhermore, the experiments were carried out over the frequency band from 30 MHz to 2 GHz, and hence, the validity of the proposed design theory was confirmed.

  • PDF