• Title/Summary/Keyword: EMG 분석

Search Result 331, Processing Time 0.024 seconds

Quantification of Degree of Fatigue in Back Muscle and Its Influence on Back Injury Using Electromyography Measurement (근전도를 통한 척추 근육의 피로도의 정량화 및 척추손상에 미치는 영향 연구)

  • 한정수;곽현석
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.219-224
    • /
    • 2000
  • 본 연구는 몸통의 반복적인 flexion/extension 동작 수행시 근전도신호를 측정하고 이들 신호에서 나타난 EMG parameters(median frequency, median power, RMS) 와 피실험자의 주관적 불편도의 변화양상간의 정량적인 관계를 알아보고자 수행되었다. 피실험자별로 3-5회 정해진 업무를 수행하였고 주관적불편도와 근전도 신호를 측정하였다. 실험결과 반복횟수가 증가할수록 주관적 불편도는 증가하였으며 각 task 별로 EMG parameter와 불편도의 증감율 간의 회귀분석과 상관분석을 수행한 결과 실험과 EMG parameter에 따른 변이는 존재했지만 대체로 RMS에 비해 MF와 MP의 증감율이 불편도 증감율과 상관관계가 높은 것으로 나타났다.

  • PDF

Difference in sEMG on lower extremity during leg press exercise with whole body vibration with various amplitude and frequency (수직 진동을 동반한 Leg Press 운동 시 진동 크기와 주파수에 따른 하지 근육의 근전도 차이 분석)

  • Choi, Jin-Seung;Kim, Yong-Jun;Kang, Dong-Won;Mun, Kyung-Ryoul;Tack, Gye-Rae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1492-1495
    • /
    • 2008
  • As a prerequisite of developing muscle biofeedback system which can simulate analogous isokinetic exercise, the purpose of this study was to study the effects of frequency and amplitude of whole-body vibration on the difference in sEMG on lower extremities during leg press exercise with/without vibration. The amplitude of vibration was set to 20, 50, 80 and the frequency of vibration was set to 10, 20, 30, and 50 Hz. EMG were measured at Vastus lateralis muscle and Vastus medialis muscle. MP100 EMG module(BIOPAC system Inc., USA) was used for EMG measurement. The result showed that the combination of frequency of 30Hz and amplitude of 50 had more activated EMG than other combination with relatively small work load (30kg). It is necessary to experiment the frequency between 20 and 40Hz in detail, and to normalize sEMG using maximal voluntary contraction (MVC).

  • PDF

The Scientific Research of Rehabilitation Training Program Participants in Stroke Patients (재활운동에 참가한 뇌졸중환자의 운동과학적 연구)

  • Jin, Young-Wan
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1704-1710
    • /
    • 2010
  • The purpose of this study was to describe the biomechanical characteristics of stroke patients. These characteristics were obtained during walking on a Zebris system, cinematography system and EMG system. Seven female stroke patients participated in this study. The magnitude of the profiles (joint peak angle, joint peak moments, foot pressure COP, EMG data) correlated with rehabilitation training duration using t-test. The significance level selected for this study was p<0.05, t-test. Joint analysis identified significant differences in hip joint peak angle and hip joint peak moment. Foot pressure verified significant differences in gait line length of COP. The EMG signal proved significant differences in rectus femoris and vastus lateralis.

Changes in EEG Activity Synchronized with EMG output of Biceps and Signal Control Possibility (이두근의 근전도 출력과 동기화된 뇌파의 활성도 변화와 신호의 제어 가능성)

  • Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1195-1201
    • /
    • 2018
  • This paper interprets the relationship between the physical activity of the human and the signal of the brain to show the meaningful results in the process of sending and receiving information to the connected muscles. When a person works or thinks, a specific brain signal is generated from the brain and being trasmmited to the connected part. The EMG signal, which has muscle activity information, outputs the result of the muscle activation as an electrical signal, which outputs muscle activity information usually due to muscle contraction and relaxation. The purpose of this study is to analyze the relationship between the two signals, which are difficult to identify easily by visual data extraction and data acquisition by extracting such EMG and EMG in real time.

An ENG analysis for estimating the individual capabilities of the rectus femoris muscle (EMG 분석을 이용한 대퇴직근의 근력추정)

  • Lee, Myeon-U;Lee, Gu-Hyeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.7 no.2
    • /
    • pp.3-17
    • /
    • 1981
  • Isometric muscle strength has become important as it is realized that a large variation in the human exists and is affected by many personal and environmental factors. Experiments have been performed for estimating the individual capabilities of the quadriceps femoris muscle in man. The surface EMG has been recorded on the belly of the rectus femoris muscle during voluntary isometric continuous exertion at 25%, 50%, 75%, and 100% MVC. As a muscle force (% MVC) increases, the rectified mean EMG amplitude increases in a non-linear form. The rectified mean EMG amplitude also increases in a non-linear with respect to fatigue progression. As the muscle force (% MVC) increases, an endurance time of isometric exertion decreases linearly. Analysis shows that rectified mean EMG amplitude is a consistent and sensitive measure of motor unit recruitments and can be useful in estimating an individual capability of a local muscle. Further, the result satisfies the sufficient condition that type S motor units are recruited first, while large motor units are recruited progressively as the fatigue develops.

  • PDF

A Digital Signal Processing System for Analysis of Skeletal Muscle EMG Signal (골격근의 근전도 신호 분석을 위하 디지탈 신호처리 시스템의 설계)

  • 전철완
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.155-164
    • /
    • 1996
  • In the clinical environment, measurements of some characteristics of the skeletal muscle are currently used to assess the severity of a neuromuscular disease or in some cases to assist in making a diagnosis. But a quantitative method of evaluation has not yet been introduced satisfactorily. In this paper, the skeletal EMG(biceps muscle, masseter muscle) analysis has been processed both in the time and in the frequency domain by designing the digital signal processing system based on pentium PC and transputer (IMS 7805). The experiment have been performed in five normal subjects, and various parameters have been statistically tested and compare4 As a results, the effective parameters obtained for the evaluation of skeletal EMG electrical activity are turn analysis, MiTi, MiTa, IEMG, PDF in the time domain, and are mean frequency, median frequency, skewness, kurtosis, muscle fatigue slope in the frequency domain. The designed H/W and S/W in this study can be used effectively for the establishment of EMG data base and for clinical research.

  • PDF

Evaluation Method of Physical Workload in Overhead Lifting Posture Using Surface EMG Analysis (sEMG 분석을 이용한 높이 들어올리기 자세에서의 신체적 작업부하의 정량적 평가방법 개발)

  • Lee, Young-Jin;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.328-335
    • /
    • 2011
  • For human factor engineering and wearable robot design, the quantitative assessment of physical workload is needed. Through measuring the surface EMG (sEMG) and analysis, the physical workload in overhead lifting posture is presented in quantitative manner. By normalizing sEMG activities with maximal voluntary contraction (MVC), the inter-subject variability is reduced. In all muscles, %MVC increased as the weight of lifting object increases. In anterior deltoid muscle, the %MVC was 3-4 times higher than the other muscles which imply that this muscle performs the major role in the overhead lifting posture. In fatigue analysis, %MVC and the mean frequency in muscle of anterior deltoid changed markedly when compared with other muscles. Through the suggested procedures and analysis, the physical workload for a specific posture can be represented in quantitative way but the clinical meaning for the value should be investigated further.

Analysis on sEMG Signals of Contents Using Finger Tapping Device (Finger Tapping 기기를 활용한 콘텐츠의 sEMG 신호 분석)

  • Han, Sang-bae;Byeon, Sang-kyu;Kim, Jae-hoon;Shin, Sung-Wook;Chung, Sung-taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.153-160
    • /
    • 2019
  • In this paper, we would like to support anyone who can rehabilitate conveniently and happily by implementing rehabilitation device and game contents that can improve the motor ability of fingers. So we developed a Finger Tapping Device that can measure finger-regulation ability, accuracy, and agility and implemented tracking, visual response, finger-regulation on game contents by utilizing this device. The verification of usability was confirmed by analyzing sEMG signals during the execution of three types of game contents after attaching sEMG to the flexor digitorum poundus, which is most involved in finger movement. As a result of the experiment, activation of the flexor digitorum poundus was performed during execution of every game contents. Furthermore, we confirmed that there is a difference in agility by measuring the reaction time for each finger according to the visual response.

A Convergence Study of Surface Electromyography in Swallowing Stages for Swallowing Function Evaluation in Older Adults: Systematic Review (노인의 삼킴 단계별 삼킴 기능 평가를 위한 표면 근전도 검사의 융합적 연구 : 체계적 문헌고찰)

  • Park, Sun-Ha;Bae, Suyeong;Kim, Jung-eun;Park, Hae-Yean
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.9-19
    • /
    • 2022
  • In this study, a systematic review was conducted to analyze the method of applying sEMG to evaluate the swallowing function of the elderly at each stage of swallowing, and to help objectively measure the swallowing stage of the older adults in clinical practice. From 2011 to 2021, 7 studies that met the selection criteria were selected using Pubmed, Scopus, and Web of Science (WoS). As a result of this study, the older adults and adults were divided into an experimental group and a control group and the swallowing phase was analyzed using sEMG only for the older adults. sEMG was used to evaluate swallowing in the oral and pharyngeal stages, and the sEMG attachment site was attached to the swallowing muscle involved in each stage. The collected sEMG data were filtered using a bandpass-filter and a notch-filter, and were analyzed using RMS, amplitude, and maximum spontaneous contraction. In this study, it was found that sEMG can be used as a tool to objectively and quantitatively evaluate the swallowing function in stages. Therefore, it is expected that this study will activate various studies that incorporate sEMG to evaluate the swallowing function in stages.