Communications for Statistical Applications and Methods
/
제16권3호
/
pp.409-419
/
2009
본 연구에서는 영상흐림보정를 위한 EM 알고리즘의 일반형 해를 제공한다. 주어진 관측영상의 크기가 크거나 많은 반복을 필요로 할 때, EM 알고리즘의 반복은 매우 오랜시간이 걸리며 비실용적이다. 본 연구에서는 복원 영상의 유효영역 밖에서 약간의 근사로부터 해를 일반형으로 나타내고, 이것을 이산형 유한 푸리에 변환을 이용하여 EM 알고리즘의 반복과정을 사용하지 않으면서 매우 유효한 복원영상을 즉시 계산하는 방법을 제공한다.
잠재토픽모델(latent topic model)은 데이타에 내재된 특징적 패턴이나 데이타 정의 자질들 간의 상호 관련성을 확률적으로 모델링하고 자동 추출하는 모델로서 최근 텍스트 문서로부터의 의미 자질 자동 추출, 이미지를 비롯한 멀티미디어 데이타 분석, 생물정보학 분야 등에서 많이 응용되고 있다. 이러한 잠재토픽모델의 대규모 데이타에 대한 적용 시 그 효과 증대를 위한 중요한 이슈 중의 하나는 모델의 효율적 학습에 관한 것이다. 본 논문에서는 대표적 잠재토픽모델 중의 하나인 PLSA (probabilistic latent semantic analysis) 기법을 대상으로 점진적 EM 알고리즘을 활용한, 기본 EM 알고리즘 기반의 기존 학습에 대한 학습속도 증진 기법을 제안한다. 점진적 EM 알고리즘은 토픽 추론 시 전체 데이타에 대한 일괄적 E-step 대신에 일부 데이타에 대한 일련의 부분적 E-step을 수행하는 특징이 있으며 이전 데이터 일부에 대한 학습 결과를 바로 다음 데이타 학습에 반영함으로써 모델 학습의 가속화를 기대할 수 있다. 또한 이론적인 측면에서 지역해로의 수렴성이 보장되고 기존 알고리즘의 큰 수정 없이 구현이 용이하다는 장점이 있다. 논문에서는 해당 알고리즘의 기본적인 응용과 더불어 실제 적용과정 상에서의 가능한 데이터 분할법들을 제시하고 모델 학습 속도 개선 면에서의 성능을 실험적으로 비교 분석한다. 실세계 뉴스 문서 데이타에 대한 실험을 통해, 제안하는 기법이 기존 PLSA 학습 기법에 비해 유의미한 수준에서 학습 속도 증진을 달성할 수 있음을 보이며 추가적으로 모델의 병렬 학습 기법과의 조합을 통한 실험 결과를 간략히 제시한다.
치우친 다변량 t-분포 혼합을 적합하기 위해 Exact-EM 알고리즘이 사용된다. 그러나 이 방법은 E-step에서 매우 긴 처리시간을 요하는 다변량 절단 t-분포의 적률을 계산해야 한다. 본 논문에서는 이러한 문제점을 완화하기 위해 SPU-EM이라 명명한 알고리즘을 제안하는데, 이것은 Meng과 van Dyk (1997)의 AECM 알고리즘의 원리를 이용하여 다차원 적률의 계산상의 어려움을 해결한다. 결과적으로 제안된 방법은 Exact-EM 알고리즘 보다 빠른 처리시간으로 보장한다. 이를 입증하기 위해 실험을 통해 제안된 방법의 유효성을 보인다.
HAP(High Altitude Platform)은 지표면 17~22km위에 있는 성층권 영역에서 운행하는 정지 궤도 공중 플랫폼으로 공중에서의 MBS(Mobile Base Station)로서의 역할이 가능하다. HAP 기반 네트워크는 인공위성 시스템과 지상통신 시스템의 장점들을 가지고 있다. 본 논문에서는 HAP 기반망의 구성 및 그 유지를 위한 HAP MBS의 배치에 대해 연구한다. 이 연구를 위해 지상 이동 노드들을 클러스터링하기 위한 클러스터링 알고리즘이 사용되는데, 본 논문에서는 EM(Expectation Maximization) 클러스터링 알고리즘을 사용한다. 본 논문의 목표는 이동 통신 단말기들 간의 거리와, 각 단말기들의 이동속도를 고려하여 단말기들이 효율적으로 클러스터링 되어 HAP의 배치가 효율적일 수 있도록 EM 알고리즘을 적용 및 개선하고, 이 EM 알고리즘을 이용한 HAP MBS 배치기법을 인구밀도에 기반을 둔 RWP(Random Waypoint) 노드 모빌리티를 이용하여 그 성능을 평가한다.
본 논문에서는 가우시안 혼합모형을 이용한 새로운 칼라 영상의 분할 알고리즘을 제안한다. 기존의 EM 알고리즘의 문제점인 국부적 최대값의 문제를 해결하기 위하여 최대 엔트로피의 원리를 이용하는 결정적 어닐링 EM 알고리즘을 소개하였고, 여러 색상들로 구성된 영상에 대하여 가우시안 혼합모형을 가정하였으며, 결정적 어닐링 EM 알고리즘을 사용하여 이들의 모수를 추정하는 방법을 알아보았다. 또한 혼합모형에 성분의 수를 자동으로 결정할 수 있는 방법을 제시하였으며 선택된 최적의 혼합모형을 사용하여 각 화소에 대한 사후확률을 계산하고 이들의 최대값을 이용하여 영상분할을 실시하였다. 결정적 어닐링 EM 알고리즘이 기존의 EM 알고리즘보다 혼합모형의 모수를 더 정확하게 추정한다는 것과 혼합모형의 성분의 수를 결정하는 제안된 방법의 성능을 실험결과를 통하여 고찰하였고, 또한 두 가지 실제 영상을 통하여 제안된 알고리즘이 기존의 알고리즘 보다 영상을 더 효율적으로 분할 할 수 있음을 보였다.
본 연구에서는 바이어스 필드에 의해 왜곡된 MRI 영상에 대한 분할을 위해 확장된 EM 알고리즘을 기반으로 한 통계적 접근법을 제시한다. 영상의 명암값을 자료로 하는 분할기법들은 고주파 성분의 잡음 뿐만 아니라 영상을 불균질하게 만드는 바이어스 필드라는 저주파 성분의 왜곡에 특히 취약하다. 이 문제를 해결하기 위해 본 논문에서는 잡음을 효과적으로 제어하기 위해 마코프랜덤필드가 적용된 정규혼합모형을 고려하며, 효과적인 바이어스 필드의 보정을 위해 페널티-우도를 도입하여 추정하는 방법으로 고안되었다.
혼합회귀모형은 반응 변수와 공변량 사이의 관계를 규명하는 유용한 통계적 모형으로 여러 분야에서 사용되어지고 있다. 하지만 실제로 혼합회귀모형을 이용하여 분석을 하는 과정에서 공변량이 결측값을 포함하는 문제는 흔하게 발생하며, 발생하는 결측의 유형 또한 다양하게 나타난다. 이러한 경우에 있어서 본 논문에서는 최대우도추정량을 구하기 위한 EM 알고리즘을 제안하고자 한다. 제안된 EM 알고리즘의 효용성을 모의실험을 통해 확인하였으며 또한 사례연구를 통해 제시된 방법이 어떻게 사용될수 있는지와 그 효용성을 함께 확인하였다.
This thesis studies two imputation methods, the MCMC method and the EM algorithm, that take care of the problem. The performance of the two methods for the linear (or quadratic) discriminant analysis are evaluated under various types of incomplete observations. Based on simulated experiments, the effect of the imputation using the EM algorithm and the MCMC method are evaluated and compared in terms of the probability of misclassification and the RMSE. This is done for the various cases of incomplete observations. The cases are differentiated by missing rates, sample sizes, and distances between two classification groups. The studies show that the probability of misclassification and the RMSE of the EM algorithm method is lower than the MCMC method. Therefore the imputation using the EM algorithm is more efficient than the MCMC method. And the probability of misclassification of the method that all vectors of observations with missing values are omitted from analysis is lower than the EM algorithm and the MCMC method when the samples size is small and the rate of missing values is extremely big.
그동안 차두시간분포를 나타내는 확률분포로 음지수분포, Erlang 분포, 정규분포 등 다양한 단일확률분포들이 사용되어져 왔다. 그러나, 실제 도로에서 차두시간분포의 조사결과는 단일확률분포로서 설명하기 어려운 경우가 있었다. 본 연구는 차량의 차두시간에 대해 두 개의 정규분포가 일정한 관련성을 가지고 결합된 복합확률분포의 파라메타에 대해 최우추정법 중 하나인 EM 알고리즘을 이용하여 추정하는 접근방법을 시도하였다. 이에 대한 분석결과 기존에 알려진 단일확률분포로서 잘 설명되기 어려웠던 차량도착 차두시간 분포를 EM 알고리즘을 이용하여 복합확률분포의 파라메타를 추정하여 설명하였다. χ2 test 적합도 검정결과, 유의수준 1%에서 통계학적으로 유의성이 확보되어 EM 알고리즘을 이용한 복합확률분포의 파라메타 추정의 신뢰성이 입증되는 것으로 분석되었다.
Journal of the Korean Data and Information Science Society
/
제16권4호
/
pp.1079-1086
/
2005
Most discussions of single imputation methods and the EM algorithm concern point estimation of population quantities with missing values. A second concern is how to get standard errors of the point estimates obtained from the filled-in data by single imputation methods and EM algorithm. Now we focus on how to estimate standard errors with incorporating the additional uncertainty due to nonresponse. There are some approaches to account for the additional uncertainty. The general two possible approaches are considered. One is the jackknife method of resampling methods. The other is multiple imputation(MI). These two approaches are reviewed and compared through simulation studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.