• Title/Summary/Keyword: EL Efficiency

Search Result 335, Processing Time 0.042 seconds

Enhanced efficiency of organic light-emitting diodes by doping the holetransport layer

  • Kwon, Do-Sung;Song, Jun-Ho;Lee, Hyun-Koo;Shin, You-Chul;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1401-1403
    • /
    • 2005
  • We present that the carrier balance can be improved by doping a hole transport layer of 4,4'- bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}$-NPD) with a hole blocking material of 2,9-dimethyl- 4,7-diphenyl-1,10-phenanthroline (BCP). The doping leads to disturb hole transport, which can enhance the balance of electron s and holes concentration in the emitting layer, aluminum tris(8 -hydroxyquinoline) (Alq3), resulting in enhanced electroluminescence (EL) quantum efficiency for the device with the doped ${\alpha}$-NPD.

  • PDF

Effect of Salicylate on Antibacterial Activity of Different Antibiotics

  • El-Naggar, Wael A.
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.99-103
    • /
    • 1992
  • Susceptibility of Psudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis to gentimicin and ceforaxime was affected by salicylaye. In presence of salicylaye (15 mM) and gentamicin (1.0 .mu.g/ml), log efficiency of plating (log E. O. P. s) for the tested bacteria were -1.24, -2.17 and -1.66 respectively. The activity of cefotaxime against Bacillus subtilis was reduced (log E. O. P. = 1.33). The highest potentiating effects of salicylaye were shown when using gentamicin against Staphylococcus aureus, cefotaxime against Ps. aeruginosa, log E. O. P.s were -3.0, and -2.4 respectively. On the other hand, no significant effects were detected with cefotaxime against Staphylococcus aureus (log E. O. P. = -0.04). No significant killing was shown in presence of gentamicin or salicylaye alone. There was no significant effect for salicylaye on MICs (By broth dilution) could be observed except in case of gentamicin against Staphyloccus aureus, which was reduced from 0.02 .mu.g/ml to 0.0012 .mu.g/ml. These results raise the concern that high concentrations of salicylaye in patients might interfere with antibiotic therapies.

  • PDF

On testing NBUL aging class of life distribution

  • Hassan, M.Kh.;El-Din, M.M. Mohie;Abu-Youssef, S.E.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Let X and $X_t$ denote the lifetime and the residual life at age t, respectively. X is said to be a NBUL (new better than used in Laplace transform order) random variable if $X_t$ is smaller than X in Laplace order, i.e., $X_t{\leq}_{LT}X$. We propose a new test statistics for testing exponentiality versus NBUL class of life distribution. The tests by Hollender and Proschan (1975) and the generalized Hollender and Proschan test by Ains and Mitra (2011) are considered as special cases of the our of test statistics. Our proposed test statistics is simple, consistent and asymptotically normal. Efficiency and powers of the test statistics for some commonly used distributions in reliability are discussed. Finally, real examples are presented to illustrate the theoretical results.

  • PDF

A Study on The Characteristics of Solar Cell by Thermal Shock test (열충격 시험을 통한 태양전지 특성에 관한 연구)

  • Kang, Min-Soo;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.249-253
    • /
    • 2012
  • In this study, The report analysed the characteristics of power drop in solar cell through thermal shock test. The solar cells were tested 500 cycles in $-40^{\circ}C$ lowest temperature and $120^{\circ}C$ highest temperature by thermal shock test on ironbound conditions, that excerpted standard of PV Module(KS C IEC-61215). The result of the efficiency analysis through measure of I-V, efficiency of Cell decreased from 13.9% to 11.0% and decreasing rate was 20.9% after test. The result of the surface analysis through EL, solar cell has damage of gridfinger and ribbon joint. Cell cracks were founded in damage of cells through cross section of solar cells. Also, Fill factors were decreased from 72.3% to 62.0% after thermal shock test and decreasing rate is 11.8%. therefore, Yearly power drop is aggravated with facts that cell crack, damage of surface and power loss of cell by change of I-V characteristic curve with decreasing of parallel resistance.

A Study on New Materials for Organic Active Devices (유기 능동 소자 제작을 위한 신소재 연구)

  • Lee, Sung-Jae;Lim, Sung-Taek;Shin, Dong-Myung;Choi, Jong-Sun;Lee, Hoo-Sung;Kim, Young-Kwan;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.174-177
    • /
    • 2000
  • The effect of a-sexithiophene(${\alpha}-6T$) layers on the light emitting diode (LED) were studied. The ${\alpha}-6T$ was used for a buffer layer in electroluminescent (EL) devices. Enhanced carrier (hole) injection and improved emission efficiency were observed. Carrier injection characteristics were investigated as a function of ${\alpha}-6T$ later thickness. The efficiency of the electroluminescence was proportional to the thickness of ${\alpha}-6T$ layer. The highest efficiency was observed 600A of ${\alpha}-6T$ later, which was about 1.5 times higher than that of device without ${\alpha}-6T$ later. The device with a-6T showed an operation voltage lowered by 2V. The ${\alpha}-6T$ layer can substitute hole blocking layer, and control charge injection properties.

EL-SEP: Improved L-SEP by adding Single-hop layer

  • LEE, WooSuk;Jung, Kye-Dong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2017
  • Wireless sensor nodes have limited energy, so it is important to optimize energy consumption to preserve network lifetime. Various protocols have been proposed for this purpose. LEACH protocol and SEP are the representative protocols. These protocols become less effective as the Sensor Field becomes wider. To improve this, MR-SEP and L-SEP were proposed. These protocols increase the energy efficiency by dividing the Sensor Field into layers and reducing the transmission distance. However, when dividing a layer, there are cases where it is divided inefficiently, and a node within a certain range from a Base Station has a better transmission efficiency than a direct transmission method using a cluster method. In this paper, we propose a Single-hop layer for L-SEP to improve inefficient layer division and near node transmission efficiency. When the larger the Sensor Field, the better the performance of the proposed method by up to 87%. The larger the sensor field, the more efficient the proposed method is over the conventional method. That is, the proposed method is suitable for the wide Sensor Field.

Electrical and Optical Characteristics in Organic Electroluminescent Devices with Different Materials for Electron Injection

  • Cho, Min-Jeong;Park, wan-Ji;Lim, Min-Su;Cheol-Hyun park;Jeon-Gu lee;Lim, Kee-Joe;Park, Soo-Gil;Kim, Hyun-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.37-41
    • /
    • 2001
  • In this study, organic electroluminescent devices with the ITO/TPD/Alq$_3$/cathode structure, using various materials of Al, Mg:Ag, Al:Li, MgF$_2$/Al, and LiF/Al as cathodes, were fabricated. We investigated the electrical and optical properties of the devices as follow: current density-voltage(J-V), luminance-voltage(L-V) and luminous efficiency-voltage curves. The bilayer cathodes with LiF/Al and MgF$_2$/Al exhibited better device performance than the other cathodes. It is considered that the improved performance of the organic electroluminescent devices is attributable to the lowering of driving voltage caused by the enhanced electron injection. The alkaline-earth fluorides are desirable materials to improve the performance of the EL devices with the Al cathode, and high luminous efficiency was achieved.

Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments

  • Abbasov, Vagif M.;El-Lateef, Hany M. Abd;Aliyeva, Leylufer I.;Ismayilov, Ismayil T.;Qasimov, Elmar E.;Narmin, Mamedova M.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The efficiency of three complex surfactants based on sunflower oil and nitrogen containing compounds as corrosion inhibitors for mild steel in $CO_2$-saturated 1% NaCl solution, has been determined by weight loss and LPR corrosion rate measurements. These compounds inhibit corrosion even at very low concentrations. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive media. The inhibition efficiency increases with increasing the concentration of the studied inhibitors. Maximum inhibition efficiency of the surfactants is observed at concentrations around its critical micellar concentration (CMC). Adsorption of complex surfactants on the mild steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Energy dispersive X-ray fluorescence microscopy (EDRF) observations of the electrode surface confirmed the existence of such an adsorbed film.

Improved Orientation Strategy for Energy-Efficiency in Photovoltaic Panels

  • Dousoky, Gamal M.;El-Sayed, Abou-Hashema M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.335-341
    • /
    • 2011
  • This paper presents an improved orientation strategy for energy-efficiency in photovoltaic (PV) panels. Conventionally, PV panels are tilted with the site's latitude angle or the difference between the latitude angle and the solar declination angle. A monthly-based orientation strategy has been proposed and analyzed in this study. The proposed strategy implies that the PV panels are tilted with the monthly-based angle that achieves the maximum incident radiation. Furthermore, the impact of using the proposed orientation strategy and three conventional strategies on the produced power and on the PV system design features has been investigated in detail. A Japanese city (Fukuoka) and an Egyptian city (Al-Kharijah) have been considered as locations for the PV power system installation. The results showed that the proposed strategy achieved an increase in the power produced from the PV power systems at the two different sites, and consequently the required solar cells area can be saved. Therefore, the cost of the PV power system components can be reduced including the solar cells area and the land area.

Performance of GACC and GACP to treat institutional wastewater: A sustainable technique

  • Khaleel, Mohammed R.;Ahsan, Amimul;Imteaz, M.;El-Sergany, M.M.;Nik Daud, N.N.;Mohamed, T.A.;Ibrahim, Buthainah A.
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.339-349
    • /
    • 2015
  • Experiments were carried out using granular activated carbon (GAC) adsorption techniques to treat wastewater contaminated with organic compounds caused by diverse human activities. Two techniques were assessed: adsorbent GAC prepared from coconut shell (GACC) and adsorbent GAC from palm shell (GACP). A comparison of these two techniques was undertaken to identify ways to improve the efficiency of the treatment process. Analysis of the processed wastewater showed that with GACC the removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity, total suspended solids (TSS) and total dissolved solids (TDS) was 65, 60, 82, 82 and 8.7%, respectively, while in the case of GACP, the removal efficiency was 55, 60, 81, 91 and 22%, respectively. It can therefore be concluded that GACC is more effective than GACP for BOD removal, while GACP is better than GACC for TSS and TDS removal. It was also found that for COD and turbidity almost the same results were achieved by the two techniques. In addition, it was observed that both GACC and GACP reduced pH value to 7.9 after 24 hrs. Moreover, the optimal time period for removal of BOD and TDS was 1 hr and 3 hrs, respectively, for both techniques.