• Title/Summary/Keyword: EEG-fMRI

Search Result 24, Processing Time 0.027 seconds

Effects of Gradient Switching Noise on ECD Source Localization with the EEG Data Simultaneously Recorded with MRI (MRI와 동시에 측정한 뇌전도 신호로 전류원 국지화를 할 때 경사자계 유발 잡음의 영향 분석)

  • Lee H. R.;Han J. Y.;Cho M. H.;Im C. H.;Jung H. K.;Lee S. Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.108-115
    • /
    • 2003
  • Purpose : To evaluate the effect of the gradient switching noise on the ECD source localization with the EEG data recorded during the MRI scan. Materials and Methods : We have fabricated a spherical EEG phantom that emulates a human head on which multiple electrodes are attached. Inside the phantom, electric current dipole(ECD) sources are located to evaluate the source localization error. The EEG phantom was placed in the center of the whole-body 3.0 Tesla MRI magnet, and a sinusoidal current was fed to the ECD sources. With an MRI-compatible EEG measurement system, we recorded the multi channel electric potential signals during gradient echo single-shot EPI scans. To evaluate the effect of the gradient switching noise on the ECD source localization, we controlled the gradient noise level by changing the FOV of the EPI scan. With the measured potential signals, we have performed the ECD source localization. Results : The source localization error depends on the gradient switching noise level and the ECD source position. The gradient switching noise has much bigger negative effects on the source localization than the Gaussian noise. We have found that the ECD source localization works reasonably when the gradient switching noise power is smaller than $10\%$ of the EEG signal power. Conclusion : We think that the results of the present study can be used as a guideline to determine the degree of gradient switching noise suppression in EEG when the EEG data are to be used to enhance the performance of fMRI.

  • PDF

Constrained Independent Component Analysis Based Extraction and Mapping of the Brain Alpha Activity in EEG

  • Ahn, S.H.;Rasheed, T.;Lee, W.H.;Kim, T.S.;Cho, M.H.;Lee, S.Y..
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.355-363
    • /
    • 2008
  • In order to extract only the alpha activity related signals from EEG recordings, we have applied Constrained Independent Component Analysis (cICA), a new extension of ICA in which some a priori knowledge of the alpha activity is utilized to extract only desired components. Its extraction (or filtering) performance has been compared to that of the conventional band-pass filtering via the scalp alpha power maps and cortical source maps of the alpha activity. Our results demonstrate that the alpha power maps and cortical source maps from the cICA-extracted alpha signals reveal more focalized alpha generating regions of the brain than those from the band-pass filtered alpha EEG signals. Furthermore they match more closely the activated regions of the brain mapped using fMRI, validating our results. We believe that the cICA-based filtering approach of EEG signals is a more effective means of extracting a specific brain activity reflected in EEG signals that will result in more accurate source localization or imaging maps.

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.3
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.

Design of Wireless EEG Measurement System for the Brain Machine Interface (뇌 기계 인터페이스를 위한 무선 EEG 측정 장치 설계)

  • Kim, D.W.;Beack, S.H.;Paek, S.E.;Kwon, S.T.;Moon, D.Y.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1912-1913
    • /
    • 2007
  • 뇌 기계 인터페이스는 뇌에 직접 연결을 시도하는 인터페이스로서 인간의 의지 또는 생각을 컴퓨터가 인식할 수 있는 디지털 신호로 바꾸는 새로운 휴먼 컴퓨터 인터페이스 중 하나이다. 뇌신경의 신호 전달 과정이 전기적, 화학적 특성을 지닌다는 사실에 착안하여 뇌의 활동을 측정하는 많은 기술들이 개발되어 왔다. PET, fMRI, MEG, EEG 등을 포괄하는 brain functional imaging 기술 중 뇌 기계 인터페이스에서 가장 주목하고 있는 것이 바로 EEG 이다. 본 연구에서는 뇌기계 인터페이스 시스템 개발에 필요한 무선 EEG 측정 장치를 설계하고, 무선 EEG 측정 장치와 컴퓨터간에 데이터 전송과 EEG 신호를 FFT 분석 하였다.

  • PDF

Clinical Application of $^{18}F-FDG$ PET in Epilepsy (간질에서의 $^{18}F-FDG$ PET의 임상 이용)

  • Kim, Yu-Kyeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.172-176
    • /
    • 2008
  • FDG PET has been used as a diagnostic tool for localization of seizure focus for last 2-3 decades. In this article, the clinical usefulness of FDG PET in the management of patients with epilepsy has been reviewed, which provided the evidences to justify the medicare reimbursement for FDG PET in management of patients with epilepsy. Literature review demonstrated that FDG PET provides an important information in localization of seizure focus and determination whether a patients is a surgical candidate or not. FDG PET has been reported to have high diagnostic performance in localization of seizure focus in neocortical epilepsy as well as temporal lobe epilepsy regardless of the presence of structural lesion on MRI. Particularly, FDG PET can provide the additional information when the results from standard diagnositic modality such as interictal or video-monitored EEG, and MRI are inconclusive or discordant, and make to avoid invasive study. Furthermore, the presence of hypometabolism and extent of metabolic extent has been reported as an important predictor for seizure free outcome. However, studies suggested that more accurate localization and better surgical outcome could be expected with multimodal approach by combination of EEG, MRI, and functional studies using FDG PET or perfusion SPECT rather than using a single diagnostic modality in management of patients with epilepsy. Complementary use of FDG PET in management of epilepsy is worth for good surgical outcome in epilepsy patients.

A Study on the MEG Imaging (MEG 영상진단 검사에 관한 연구)

  • Kim, Jong-Gyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.2
    • /
    • pp.123-128
    • /
    • 2005
  • Magnetoencephalography (MEG) is the measurement of the magnetic fields produced by electrical activity in the brain, usually conducted externally, using extremely sensitive devices such as Superconducting Quantum Interference Device (SQUID). MEG needs complex and expensive measurement settings. Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = 10-15T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. An appropriate magnetically shielded room is very expensive, and constitutes the bulk of the expense of an MEG system. MEG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI). MEG combines functional information from magnetic field recordings with structural information from MRI. The clinical uses of MEG are in detecting and localizing epileptic form spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors. Magnetoencephalography may be used alone or together with electroencephalography, for the measurement of spontaneous or evoked activity, and for research or clinical purposes.

  • PDF

Quantitative Electroencephalogram Markers for Predicting Cerebral Amyloid Pathology in Non-Demented Older Individuals With Depression: A Preliminary Study (비치매 노인 우울증 환자에서 대뇌 아밀로이드 병리 예측을 위한 정량화 뇌파 지표: 예비연구)

  • Park, Seon Young;Chae, Soohyun;Park, Jinsick;Lee, Dong Young;Park, Jee Eun
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.2
    • /
    • pp.78-85
    • /
    • 2021
  • Objectives: When elderly patients show depressive symptoms, discrimination between depressive disorder and prodromal phase of Alzheimer's disease is important. We tested whether a quantitative electroencephalogram (qEEG) marker was associated with cerebral amyloid-β (Aβ) deposition in older adults with depression. Methods: Non-demented older individuals (≥ 55years) diagnosed with depression were included in the analyses (n = 63; 76.2% female; mean age ± standard deviation 73.7 ± 6.87 years). The participants were divided into Aβ+ (n = 32) and Aβ- (n = 31) groups based on amyloid PET assessment. EEG was recorded during the 7min eye-closed (EC) phase and 3min eye-open (EO) phase, and all EEG data were analyzed using Fourier transform spectral analysis. We tested interaction effects among Aβ positivity, condition (EC vs. EO), laterality (left, midline, or right), and polarity (frontal, central, or posterior) for EEG alpha band power. Then, the EC-to-EO alpha reactivity index (ARI) was examined as a neurophysiological marker for predicting Aβ+ in depressed older adults. Results: The mean power spectral density of the alpha band in EO phase showed a significant difference between the Aβ+ and Aβ- groups (F = 6.258, p = 0.015). A significant 3-way interaction was observed among Aβ positivity, condition, and laterality on alpha-band power after adjusting for age, sex, educational years, global cognitive function, medication use, and white matter hyperintensities on MRI (F = 3.720, p = 0.030). However, post-hoc analyses showed no significant difference in ARI according to Aβ status in any regions of interest. Conclusion: Among older adults with depression, increased power in EO phase alpha band was associated with Aβ positivity. However, EC-to-EO ARI was not confirmed as a predictor for Aβ+ in depressed older individuals. Future studies with larger samples are needed to confirm our results.

The Output Characteristics of Transcranial Magnetic Stimulation with Voltage Variable Capacitor-Charging System

  • Kim, Whi-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.205-211
    • /
    • 2010
  • In this study, a Magnetic stimulation Pulse Train control technique is introduced and applied to Flyback converter operating in discontinuous conduction mode. In contrast to the conventional pulse width modulation control scheme, the principal idea of a Magnetic stimulation Pulse Train is to achieve output voltage regulation using high and low power pulses. The proposed technique is applicable to any converter operating in discontinuous conduction. However, this work mainly focuses on Flyback topology. In this paper, the main mathematical concept of the new control algorithm is introduced and simulations as well as experimental results are presented.

Exploration of Neurophysiological Mechanisms underlying Action Performance Changes caused by Semantic Congruency between Perceived Action Verbs and Current Actions (지각된 행위동사와 현재 행위의 의미 일치성에 따른 행위 수행 변화의 신경생리학적 기전 탐색)

  • Rha, Younghyoun;Jeong, Myung Yung;Kwak, Jarang;Lee, Donghoon
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.4
    • /
    • pp.573-597
    • /
    • 2016
  • Recent fMRI and EEG research for neural representations of action concepts insist that processing of action concepts evoke the simulation of sensory-motor information. Moreover, there are several behavioral studies showing that understanding of action verbs or sentences describing actions interfere or facilitate current action performance. However, it is unclear that online interaction between processing of action concepts and current action is based on the simulation of sensory-motor information, or other neural mechanisms. The present research aims to explore the underlying neural mechanism that how the perception of action language influence the performance of current action using high-spacial temporal resolution EEG and multiple source analysis techniques. For this, participants were asked to perform a cued-motor reaction task in which button-pressing hand action and pedal-stepping foot action were required according to the color of the cue, and we presented auditorily action verbs describing the responding actions (i.e., /press/, /step/, /stop/) just before the color cue and examined the interaction effect from the semantic congruency between the action verbs and the current action. Behavioral results revealed consistently a facilitatory effect when action verbs and responding actions were semantically congruent in both button-pressing and pedal-stepping actions, and an inhibitory effect when semantically incongruent in the button-pressing action condition. In the results of EEG source waveform analysis, the semantic congruency effects between action verbs and the responding actions were observed in the Wernicke's area during the perception of action verbs, in the anterior cingulate gyrus and the supplementary motor area (SMA) at the time when the motor-cue was presented, and in the SMA and primary motor cortex (M1) during action execution stage. Based on the current findings, we argue that perceived action verbs evoke the facilitation/inhibition effect by influencing the expectation and preparation stage of following actions rather than the directly activating the particular motor cortex. Finally we discussed the implication on the neural representation of action concepts and methodological limitations of the current research.