DOI QR코드

DOI QR Code

Exploration of Neurophysiological Mechanisms underlying Action Performance Changes caused by Semantic Congruency between Perceived Action Verbs and Current Actions

지각된 행위동사와 현재 행위의 의미 일치성에 따른 행위 수행 변화의 신경생리학적 기전 탐색

  • Rha, Younghyoun (Interdisciplinary program of Cognitive Science, Pusan National University) ;
  • Jeong, Myung Yung (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kwak, Jarang (Department of Psychology, Pusan National University) ;
  • Lee, Donghoon (Interdisciplinary program of Cognitive Science, Pusan National University)
  • 나영현 (부산대학교 대학원 인지과학협동과정) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과) ;
  • 곽자랑 (부산대학교 심리학과) ;
  • 이동훈 (부산대학교 대학원 인지과학협동과정)
  • Received : 2016.12.25
  • Accepted : 2016.12.27
  • Published : 2016.12.31

Abstract

Recent fMRI and EEG research for neural representations of action concepts insist that processing of action concepts evoke the simulation of sensory-motor information. Moreover, there are several behavioral studies showing that understanding of action verbs or sentences describing actions interfere or facilitate current action performance. However, it is unclear that online interaction between processing of action concepts and current action is based on the simulation of sensory-motor information, or other neural mechanisms. The present research aims to explore the underlying neural mechanism that how the perception of action language influence the performance of current action using high-spacial temporal resolution EEG and multiple source analysis techniques. For this, participants were asked to perform a cued-motor reaction task in which button-pressing hand action and pedal-stepping foot action were required according to the color of the cue, and we presented auditorily action verbs describing the responding actions (i.e., /press/, /step/, /stop/) just before the color cue and examined the interaction effect from the semantic congruency between the action verbs and the current action. Behavioral results revealed consistently a facilitatory effect when action verbs and responding actions were semantically congruent in both button-pressing and pedal-stepping actions, and an inhibitory effect when semantically incongruent in the button-pressing action condition. In the results of EEG source waveform analysis, the semantic congruency effects between action verbs and the responding actions were observed in the Wernicke's area during the perception of action verbs, in the anterior cingulate gyrus and the supplementary motor area (SMA) at the time when the motor-cue was presented, and in the SMA and primary motor cortex (M1) during action execution stage. Based on the current findings, we argue that perceived action verbs evoke the facilitation/inhibition effect by influencing the expectation and preparation stage of following actions rather than the directly activating the particular motor cortex. Finally we discussed the implication on the neural representation of action concepts and methodological limitations of the current research.

최근 행위 개념의 신경적 표상에 대한 fMRI나 EEG 연구들은 행위 개념의 처리가 감각-운동 정보의 모사(simulation)를 불러일으킨다고 주장한다. 이와 아울러 행위동사나 행위 문장 이해가 현재 수행해야 하는 행위를 간섭하거나 촉진시킨다는 행동연구들도 존재한다. 그러나 행위 개념 처리와 현재 행동 수행간의 실시간 상호작용이 감각-운동정보의 모사를 매개로 하는지, 또 다른 기전에 바탕을 두는지 아직까지 분명하지 않다. 본 연구에서는 행위 언어 지각이 어떻게 현재 행위 수행에 영향을 주는지 그 기저에 있는 신경 메커니즘을 시공간적으로 탐색하고자 시간해상도가 높은 뇌파 측정과 다중전류원분석이라는 뇌파분석 기법을 사용하였다. 이를 위하여 실험참가자에게 단서 자극 색상에 따라 손으로 버튼 누르기 행동과 발로 페달 밟기 행동을 해야 하는 단서-운동반응 과제를 수행하도록 하였고, 단서가 제시되기 직전에 반응 행위자체를 기술하는 행위동사(즉, 눌러라, 밟아라, 멈춰라)를 청각적으로 제시하여 행위동사와 반응 행동 간의 의미 일치성에 따른 상호작용을 관찰하였다. 반응시간 분석 결과, 손으로 버튼을 누르는 반응행위와 발을 이용하여 페달을 밟는 반응행위 모두에서 행위동사와 반응행위가 일치하는 경우 촉진효과가 관찰되었고, 불일치에 따른 간섭효과는 손 행위에서 나타났다. 전류원 파형 분석결과, 행위동사와 반응행위간의 의미일치성 효과는 행위 동사 처리 기간에는 베르니케 영역, 운동단서 제시 시점에선 전대상회와 보조운동영역, 운동수행 시점에서는 보조운동영역과 일차운동피질에서 통계적으로 유의한 차이가 관찰되었다. 현재 결과로는 행위동사가 특정 운동피질을 활성화시켜 이를 매개로 현재 행위에 영향을 준다고 하기보다, 뒤따르는 행위를 예측하고 이를 준비하는 과정에 영향을 미쳐, 촉진/간섭효과를 가져오는 것으로 보인다. 마지막으로 본 연구가 가지는 행위 개념의 신경학적 표상에 대한 함의와 연구 방법론상 한계에 대해 논의하였다.

Keywords

References

  1. 리창림, 정명영, 이동훈 (2011). 반응행위에 미치는 언어자극의 간섭효과. 한국심리학회지: 인지 및 생물, 23, 393-409.
  2. 이동훈, 신천우, 신현정 (2012). 사회적 행위 지각에 있어 해석 효과. 인지과학, 23, 109-132.
  3. Agnew, Z. K., Bhakoo, K. K., & Puri, B. K. (2007). The human mirror system: a motor resonance theory of mind-reading. Brain Research Reviews, 54, 286-293. https://doi.org/10.1016/j.brainresrev.2007.04.003
  4. Aziz‐Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor facilitation in response to manual action sounds. European Journal of Neuroscience, 19, 2609-2612. https://doi.org/10.1111/j.0953-816X.2004.03348.x
  5. Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16, 1818-1823. https://doi.org/10.1016/j.cub.2006.07.060
  6. Boulenger, V., Roy, A. C., Paulignan, Y., Deprez, V., Jeannerod, M., & Nazir, T. A. (2006). Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. Journal of Cognitive Neuroscience, 18, 1607-1615. https://doi.org/10.1162/jocn.2006.18.10.1607
  7. Boulenger, V., Silber, B. Y., Roy, A. C., Paulignan, Y., Jeannerod, M., & Nazir, T. A. (2008). Subliminal display of action words interferes with motor planning: a combined EEG and kinematic study. Journal of Physiology-Paris, 102, 130-136. https://doi.org/10.1016/j.jphysparis.2008.03.015
  8. Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: A combined TMS and behavioral study. Cognitive Brain Research, 24, 355-363. https://doi.org/10.1016/j.cogbrainres.2005.02.020
  9. Chersi, F., Thill, S., Ziemke, T., & Borghi, A. M. (2010). Sentence processing: linking language to motor chains. Frontiers in Neurorobotics, 4, 4.
  10. Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension. Oxford: Oxford University Press.
  11. Gibbs Jr, R. W. (2005). Embodiment and Cognitive Science. New York, NY: Cambridge University Press.
  12. Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 586-596. https://doi.org/10.1002/wcs.55
  13. Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9, 558-565. https://doi.org/10.3758/BF03196313
  14. Hanslmayr, S., Pastotter, B., Bauml, K. H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20, 215-225. https://doi.org/10.1162/jocn.2008.20020
  15. Hauk, O., Johnsrude, I., & Pulvermuller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301-307. https://doi.org/10.1016/S0896-6273(03)00838-9
  16. Hauk, O., Shtyrov, Y., & Pulvermuller, F. (2008). The time course of action and action-word comprehension in the human brain as revealed by neurophysiology. Journal of Physiology-Paris, 102, 50-58. https://doi.org/10.1016/j.jphysparis.2008.03.013
  17. Hoechstetter, K., Bornfleth, H., Weckesser, D., Ille, N., Berg, P., & Scherg, M. (2004). BESA source coherence: a new method to study cortical oscillatory coupling. Brain Topography, 16, 233-238.
  18. Jerbi, K., Vidal, J. R., Mattout, J., Maby, E., Lecaignard, F., Ossandon, T., Hamame, C. M., Dalal, S. S., Bouet, R. Lachaux, J. -P., Leahy, R. M., Baillet, S., Garnero, L., Delpuech, C., & Bertrand, O. (2011). Inferring hand movement kinematics from MEG, EEG and intracranial EEG: From brain-machine interfaces to motor rehabilitation. Innovation and Research in BioMedical engineering, 32, 8-18.
  19. Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7, 1299-1301. https://doi.org/10.1038/nn1355
  20. Koles, Z. J., & Soong, A. C. (1998). EEG source localization: implementing the spatio-temporal decomposition approach. Electroencephalography and Clinical Neurophysiology, 107, 343-352. https://doi.org/10.1016/S0013-4694(98)00084-4
  21. Leuthold, H., & Jentzsch, I. (2001). Neural correlates of advance movement preparation: a dipole source analysis approach. Cognitive Brain Research, 12, 207-224. https://doi.org/10.1016/S0926-6410(01)00052-0
  22. Leuthold, H., & Jentzsch, I. (2002). Distinguishing neural sources of movement preparation and execution: An electrophysiological analysis. Biological Psychology, 60, 173-198. https://doi.org/10.1016/S0301-0511(02)00032-7
  23. Liotti, M., Woldorff, M. G., Perez, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38, 701-711. https://doi.org/10.1016/S0028-3932(99)00106-2
  24. Loporto, M., Holmes, P. S., Wright, D. J., & McAllister, C. J. (2013). Reflecting on mirror mechanisms: motor resonance effects during action observation only present with low-intensity transcranial magnetic stimulation. PLoS One, 8, e64911. https://doi.org/10.1371/journal.pone.0064911
  25. Lu, M. K., Arai, N., Tsai, C. H., & Ziemann, U. (2012). Movement related cortical potentials of cued versus self‐initiated movements: Double dissociated modulation by dorsal premotor cortex versus supplementary motor area rTMS. Human Brain Mapping, 33, 824-839. https://doi.org/10.1002/hbm.21248
  26. Lucci, G., Berchicci, M., Spinelli, D., & Di Russo, F. (2014). The motor preparation of directionally incompatible movements. NeuroImage, 91, 33-42. https://doi.org/10.1016/j.neuroimage.2014.01.013
  27. Maris, E. & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164, 177-190. https://doi.org/10.1016/j.jneumeth.2007.03.024
  28. Mollo, G., Pulvermüller, F., & Hauk, O. (2016). Movement priming of EEG/MEG brain responses for action-words characterizes the link between language and action. Cortex, 74, 262-276. https://doi.org/10.1016/j.cortex.2015.10.021
  29. Oberman, L. M., Pineda, J. A., & Ramachandran, V. S. (2007). The human mirror neuron system: a link between action observation and social skills. Social Cognitive and Affective Neuroscience, 2, 62-66. https://doi.org/10.1093/scan/nsl022
  30. Pollatos, O., Kirsch, W., & Schandry, R. (2005). Brain structures involved in interoceptive awareness and cardioafferent signal processing: a dipole source localization study. Human Brain Mapping, 26, 54-64. https://doi.org/10.1002/hbm.20121
  31. Praamstra, P., Stegeman, D. F., Horstink, M. W. I. M., & Cools, A. R. (1996). Dipole source analysis suggests selective modulation of the supplementary motor area contribution to the readiness potential. Electroencephalography and Clinical Neurophysiology, 98, 468-477. https://doi.org/10.1016/0013-4694(96)95643-6
  32. Rizzolatti, G., & Craighero, L. (2005). Mirror neuron: a neurological approach to empathy. In J. -P. Changeux, A. R. Damasio, W. Singer & Y. Christen (Eds.), Neurobiology of Human Values: Research and perspectives in neurosciences (pp. 107-123). Heidelberg, Berlin: Springer.
  33. Saint-Amour, D., De Sanctis, P., Molholm, S., Ritter, W., & Foxe, J. J. (2007). Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion. Neuropsychologia, 45, 587-597. https://doi.org/10.1016/j.neuropsychologia.2006.03.036
  34. Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S. F., & Perani, D. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17, 273-281. https://doi.org/10.1162/0898929053124965
  35. Tranel, D., Kemmerer, D., Adolphs, R., Damasio, H., & Damasio, A. R. (2003). Neural correlates of conceptual knowledge for actions. Cognitive Neuropsychology, 20, 409-432. https://doi.org/10.1080/02643290244000248
  36. Valentini, E., Liang, M., Aglioti, S. M., & Iannetti, G. D. (2012). Seeing touch and pain in a stranger modulates the cortical responses elicited by somatosensory but not auditory stimulation. Human Brain Mapping, 33, 2873-2884. https://doi.org/10.1002/hbm.21408
  37. Vanhoutte, S., Strobbe, G., van Mierlo, P., Cosyns, M., Batens, K., Corthals, P., De Letter, M., Van Borsel, J., & Santens, P. (2015). Early lexico-semantic modulation of motor related areas during action and non-action verb processing. Journal of Neurolinguistics, 34, 65-82. https://doi.org/10.1016/j.jneuroling.2015.01.001
  38. Ward, J. (2015). The student's guide to cognitive neuroscience. New York, NY: Psychology Press.
  39. Watson, C. E., Cardillo, E. R., Ianni, G. R., & Chatterjee, A. (2013). Action concepts in the brain: an activation likelihood estimation meta-analysis. Journal of Cognitive Neuroscience, 25, 1191-1205. https://doi.org/10.1162/jocn_a_00401
  40. Zwaan, R. A., & Taylor, L. J. (2006). Seeing, acting, understanding: motor resonance in language comprehension. Journal of Experimental Psychology: General, 135, 1-11. https://doi.org/10.1037/0096-3445.135.1.1