• Title/Summary/Keyword: EDS Process

Search Result 449, Processing Time 0.029 seconds

Properties of the 18K Red Gold Solder Alloys with Indium Contents (18K 레드 골드 정함량 솔더의 In 첨가에 따른 물성변화)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2018
  • The properties of 18 K red gold solder alloys were investigated by changing the content of In up to 10.0 wt% in order to replace the hazardous Cd element. Cupellation and energy dispersive X-ray spectroscopy (EDS) were used to check the composition of each alloy, and FE-SEM and UV-VIS-NIR-Colormeter were employed for microstructure and color characterization. The melting temperature, hardness, and wetting angle of the samples were determined by TGA-DTA, the Vickers hardness tester, and the Wetting angle tester. The cupellation result confirmed that all the samples had 18K above 75.0wt%-Au. EDS results showed that Cu and In elements were alloyed with the intended composition without segregation. The microstructure results showed that the amount of In increased, and the grain size became smaller. The color analysis revealed that the proposed solders up to 10.0 wt% In showed a color similar to the reference 18 K substrate like the 10.0 wt% Cd solder with a color difference of less than 7.50. TGA-DTA results confirmed that when more than 5.0 wt% of In was added, the melting temperature decreased enough for the soldering process. The Vickers hardness result revealed that more than 5.0 wt% In solder alloys had greater hardness than 10.0 wt% Cd solder, which suggested that it was more favorable in making a wire type solder. Moreover, all the In solders showed a lower wetting angle than the 10.0 wt% Cd solder. Our results suggested that the In alloyed 18 K red gold solders might replace the conventional 10.0 wt% Cd solder with appropriate properties for red gold jewelry soldering.

Conservation of the Metal ball fired by a cannon (창녕 화왕산성 출토 비격진천뢰(飛擊震天雷)의 보존)

  • Gwak, Hongin;Hwang, Jungsoon;Yu, Heisun;Chung, Kwangyong
    • Conservation Science in Museum
    • /
    • v.7
    • /
    • pp.25-31
    • /
    • 2006
  • We performed the conservation treatment for Bigyeokchinjeonnoe (A kind of time bomb in the Joseon Dynasty) excavated from Hwawangsanseong Fortress in Changnyeong-gun, Gyeongsangnam-do Province. Part of the Bigyeokchinjeonnoe has been lost; we did not restore the lost part so that one can observe the inside through it. The results of X-ray investigation and C. T (Computed Tomography) scan proved the generation of many blowholes around the molding line during the casting process; a hole in the casting mold to maintain inner mold during casting was identified on the surface and traces of fortifying this part with iron plate were also identified. The main ingredients of the blue corrosion on the surface were identified as O, Fe, P, Si and Al by SEM/EDS analysis. The result of XRD analysis identified the blue corrosion as vivianite [Fe3(PO4)2·8H2O]. The metal structure clarified its material was gray cast iron.

Interfacial Reaction of Ag Bump/Cu Land Interface for B2it Flash Memory Card Substrate (B2it 플래시 메모리 카드용 기판의 Ag 범프/Cu 랜드 접합 계면반응)

  • Hong, Won-Sik;Cha, Sang-Suk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • After flash memory card(FMC) was manufactured by $B^2it$ process, interfacial reaction of silver bump with thermal stress was studied. To investigate bonding reliability of Ag bump, thermal shock and thermal stress tests were conducted and then examined on the crack between Cu land and Ag bump interface. Diffusion reaction of Ag bump/Cu land interface was analyzed using SEM, EDS and FIB. The Ag-Cu alloy layer due to the interfacial reaction was formed at the Ag/Cu interface. As the diffusivity of Ag ${\rightarrow}$ Cu is faster than Cu ${\rightarrow}$ Ag, a lot of (Cu, Ag) alloy layers were observed at the Cu layer than Ag. These alloy layers contributed to increase the Cu-Ag bonding strength and its reliability.

Microscopic Analysis of High Lithium-Ion Conducting Glass-Ceramic Sulfides

  • Park, Mansoo;Jung, Wo Dum;Choi, Sungjun;Son, Kihyun;Jung, Hun-Gi;Kim, Byung-Kook;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Hyoungchul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.568-573
    • /
    • 2016
  • We explore the crystalline structure and phase transition of lithium thiophosphate ($Li_7P_3S_{11}$) solid electrolyte using electron microscopy and X-ray diffraction. The glass-like $Li_7P_3S_{11}$ powder is prepared by the high-energy mechanical milling process. According to the energy dispersive X-ray spectroscopy (EDS) and selected area diffraction (SAD) analysis, the glass powder shows chemical homogeneity without noticeable contrast variation at any specific spot in the specimen and amorphous SAD ring patterns. Upon heating up to $260^{\circ}C$ the glass $Li_7P_3S_{11}$ powder becomes crystallized, clearly representing crystal plane diffraction contrast in the high-resolution transmission electron microscopy image. We further confirm that each diffraction spot precisely corresponds to the diffraction from a particular $Li_7P_3S_{11}$ crystallographic structure, which is also in good agreement with the previous X-ray diffraction results. We expect that the microscopic analysis with EDS and SAD patterns would permit a new approach to study in the atomic scale of other lithium ion conducting sulfides.

A study on the ECMP process improvement with optimization of $NaNO_3$ Electrolyte ($NaNO_3$ 전해액의 최적화로 인한 ECMP 공정 개선에 관한 연구)

  • Lee, Young-Kyun;Park, Sung-Woo;Han, Sang-Jun;Lee, Sung-Il;Jung, Pan-Geom;Choi, Gwon-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.53-53
    • /
    • 2007
  • 반도체 소자의 고집적화, 미세화 화로 인해 반도체의 동작속도를 증가시키기 위하여 Cu를 이용한 금속배선이 주목받게 되었으나, 높은 압력으로 인한 보은 Cu 영역에서 과잉 디슁 현상과 에로젼을 유도하고 반도체 웨이퍼위의 low-k 물질에 손상을 줌에 따라 메탈라인 브리징과 단락을 초래할 있어, Cu의 단락인 islands를 남김으로서 표면 결항을 제거하지 못한다는 단점을 가지고 있었다. 그래서 이러한 문제점을 해결하기 위하여 기존의 CMP에 전기화학을 결합시킴으로서 낮은 하력에서의 Cu평탄화를 달성할 수 있는 ECMP (electrochemical mechanical polishing)기술이 필요하게 되었다. 따라서 본 논문에서는 전기화학적 기계적 연마(ECMP)작용을 위해, I-V 특성 곡선을 이용하여 패시베이션 막의 active, passive, transient, trans-passive영역의 전기화학적 특성을 비교 분석하였으며, Cu막의 표면 형상을 알아보기 위해 scanning electron microscopy (SEM) 측정과 energy dispersive spectroscopy (EDS)와 X-ray Diffraction (XRD) 분석을 통해 금속 화학적 조성을 조사하였다.

  • PDF

The Oxidation of Chalcopyrite and Geochemical Behavior of Heavy Metals in the Manjang Cu Mine (만장광산에서 산출되는 황동석의 산화과정과 중금속 거동 특성)

  • 이평구;이인경;최상훈;김지수
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.291-301
    • /
    • 2004
  • In order to charaterize weathering of chalcopyrite and behavior of dissolved metal ions in waste rocks from Manjang Cu mine, mineralogical studies such as refractive microscope, XRD and SEM/EDS analyses carried out. The weathering was mainly occurred in fractures and edge of the chalcopyrite within the mine waste rocks. The weathering process can be seen to reflect four stages based on the weathering degree of chalcopyrite. The main secondary minerals are goethite, covellite, azurite, malachite and brochantite. Dissolved Cu and As were mainly adsorbed Fe-hydroxide. Poorly crystalline Fe-oxide contains relatively high As contents. In oxdizing condition, the weathering of chalcopyrite mainly occurs along the fracture, while the replacement of chalcopyrite observed mainly in the grain and produced covellite and brochantite. The dissolved metals (Cu, Fe, As) in waste rocks from the abandoned Manjang mine area could attenuate naturally by precipitation, adsorption and replacement reaction.

Producing of Bronze Artifacts Excavated from Gulsansa Temple Site in Gangneung: Technology and Provenance (강릉 굴산사지에서 출토된 청동기의 제작: 제작기술 및 원료산지)

  • Han, Woo Rim;Kim, So Jin;Lee, Eun Woo;Hwang, Jin Ju
    • Journal of Conservation Science
    • /
    • v.35 no.3
    • /
    • pp.187-196
    • /
    • 2019
  • Bronzes excavated from a Gulsansa temple site in Gangneung were investigated in order to study the production of technology and provenance in this area. The bronze artifacts were discovered to consist of copper-tin or copper-tin-lead alloys using chemical analysis(EDS and EPMA). The excavated bronzes were manufactured using a casting or hammering process, and a bronze belt was gilded with gold foil. The provenance of 25 bronzes was studied using lead isotope analysis(TIMS and LA-MC-ICPMS). The results reveal the use of raw materials found near the excavated site. The object of this study was to investigate the manufacturing techniques and provenance in Gangneung without the need for a lot of data. Our results will contribute to the study of Gulsansa and bronze artifacts in Goryo(12-13th century).

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Study on Improvement of Thermal Stability of Dendrite-shape Copper Particles by Electroless Silver Plating (Dendrite 형상 구리 입자의 무전해 은 도금에 의한 열적 안정성 향상에 관한 연구)

  • Hwang, In-Seong;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.574-580
    • /
    • 2022
  • While in the process of electroless plating of dendrite-shape copper with silver, various silver-coated copper (Ag@Cu) particles were prepared by using both displacement plating and reducing electroless plating. The physicochemical properties of Ag@Cu particles were analyzed by scanning electron microscope- energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller analysis (BET), and it was confirmed that the silver coated by the reducing electroless plating was formed as nano-particles on the copper surface. Ag@Cu particles were compounded with an epoxy resin to prepare a conductive film, and its thermal stability was evaluated. We investigated the effect of the difference between the displacement plating and reducing electroless plating on the initial resistance and thermal stability of conductive films.

Effect of Active Metal Loading on Catalytic Activity of V2O5/TiO2 Catalysts (V2O5/TiO2 촉매의 활성금속 함량이 촉매 활성에 미치는 영향)

  • Jang, Younghee;Kim, Sung Chul;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.482-487
    • /
    • 2022
  • In this study, the activity test and characterization were performed to evaluate the hydrogen sulfide removal characteristics using a V/TiO2 catalyst at room temperature. The optimal vanadium loading was 10 wt%, and the durability was greater than 60 minutes at 60~80% relative humidity. The Brunauer-Emmett-Teller (BET) surface area and raman spectroscopy results confirmed that the structure of the vanadium site exposed to the surface was a dominant factor in catalyst activity. From Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray crystallography (XRD) analyses, it was found that sulfur can be accumulated on the catalyst surface, which results in a decrease in durability under catalytic activity tests. Therefore, it is judged that a combined process of catalytic oxidation and regeneration is needed.