• Title/Summary/Keyword: EDLC electrode

Search Result 83, Processing Time 0.02 seconds

Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Yang, Inchan;Kwon, Soon Hyung;Kim, Bum-Soo;Kim, Sang-Gil;Lee, Byung-Jun;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.132-137
    • /
    • 2015
  • The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.

Electrochemical Properties of Electric Double Layer Capacitor with PolyanilineComposite (Polyaniline Composite 전극을 사용한 전기 이중층 캐패시터의 전기화학적 특성)

  • 강광우;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.370-373
    • /
    • 1999
  • The purpose of this study is to research and develop PAn composite electrode for EDLC. EDLC cell of PAn composite electrode with 1M LiClO$_4$/PC brings out good capacitor performance below 4.0V. The radius of semicircle of PAn composite electrode adding 15wt% SP270 was absolutely small. The total resistance of EDLC cell mainly depended on internal resistance of the electrode. The discharge capacitance of PAn composite with 15wt% SP270 in 1st and 200th cycles was 42 and 42 F/g at current density of 1mA/cm$^2$. The capacitance of PAn composite with 15wt%. SP270 capacitor was larger than that of PAn capacitor without SP270. The coulombic efficiency of EDLC at discharge process of 1 and 200 cycles were 94 and 100% respectively. PAn composite EDLC with 15wt% SP270 content showed good capacitance and stability with cycling.

  • PDF

High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch

  • Choi, Poo Reum;Kim, Sang-Gil;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.22
    • /
    • pp.70-80
    • /
    • 2017
  • Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) pre-carbonized at $500-1000^{\circ}C$ in $N_2$ gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at $700^{\circ}C$, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above $700^{\circ}C$ and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.

Electrochemical Performance of Activated Carbon Electrode Materials with Various Post Treatments for EDLC (활성탄의 후 처리에 의한 EDLC 전극재의 전기화학 성능 개선)

  • Lee, Eunji;Kwon, Soon Hyung;Choi, Pooreum;Jung, Ji Chul;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.285-292
    • /
    • 2014
  • Commercial activated-carbon used as the electrode material of an electric double-layer capacitor (EDLC) was posttreated with various acids and alkalis to increase its capacitance. The carbon samples prepared were then heat-treated in order to control the amount of acidic functional groups formed by the acid treatments. Coin-type EDLC cells with two symmetric carbon electrodes were assembled using the prepared carbon materials and an organic electrolyte. The electrochemical performance of the EDLC was measured by galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the various activated carbons, the carbon electrodes (CSsb800) prepared by the treatments of coconutshell-based carbon activated with NaOH and $H_3BO_5$, and then heat treated at $800^{\circ}C$ under a flow of nitrogen gas, showed relatively good electrochemical performance. Although the specific-surface-area of the carbon-electrode material ($1,096m^2/g$) was less than that of pristine activated-carbon ($1,122m^2/g$), the meso-pore volume increased after the combined chemical and heat treatments. The specific capacitance of the EDLC increased from 59.6 to 74.8 F/g (26%) after those post treatments. The equivalent series resistance of EDLC using CSsb800 as electrode was much lower than that of EDLC using pristine activated carbon. Therefore, CSsb800 exhibited superior electrochemical performance at high scan rates due to its low internal resistance.

Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment (K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능)

  • Choi, Poo Reum;Jung, Ji Chul;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.460-467
    • /
    • 2016
  • Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by $K_2CO_3$ and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by $K_2CO_3$ activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of $CTP/K_2CO_3$ ratio, activation temperature, and activation period.

Electrochemical Characteristics of EDLC Fabricated by Different Preparation Processes of Activated Carbon Electrode (활성탄소 전극의 제조공정에 따른 EDLC의 전기화학적 특성)

  • Yang Chun-Mo;Kim H.J.;Cho W.I.;Cho B.W.;Yun K.S.;Rim Byung-O
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.98-103
    • /
    • 2001
  • The electrochemical characteristics and specific capacitance were investigated by preparation processes (dip coating method, doctor blade coating method and paste rolling method) of activated carbon electrode for an EDLC(electric double layer capacitor). The EDLC using $LiPF_6$ salts and PC-DEC solvents showed good specific capacitance, 130F/g and small IR-drop at linear time-voltage curve. 0.11V, Cyclic voltammetry analysis using the activated carbon electrode prepared by dip coating method was shown closer to ideal EDLC characterization.

Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons

  • Wu, Jin-Gyu;Hong, Ik-Pyo;Park, Sei-Min;Lee, Seong-Young;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2008
  • The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by $HNO_3$ and then heat treated at $800^{\circ}C$ were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.

The Electrochemical Characteristics of Mesopore Active Carbon Fiber for EDLC Electrode (EDLC 전극용 메조기공 활성탄소 섬유의 전기화학적 특성)

  • Kang, Chae-Yoen;Shin, Yun-Sung;Lee, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.10-14
    • /
    • 2011
  • The electrode material performances of electric double layer capacitor(EDLC) were investigated using mesopous active carbon fiber(ACF), which was prepared by the iron exchange method. The mesoporous ACF had pore characteristics of specific surface area around 1249, 664 $m^2$/g, mesoporous fraction around 70.6-81.3% and meanpore size around 2.78-4.14 nm. The results showed that as HNO3 treatment time decreased, the specific surface area increased and mesoporous fraction decreased. To investigate electrochemical performance of EDLC, unit cell was manufactured using mesoporus ACF, conducting material and binder; organic elctrolyte was used on this experiment. The specific capacitance of ACF treated with HNO3 for 2 hours turned out to be 0.47 $F/cm^2$and the results of the cyclic charge-discharge tests were stable. Thus, the electrochemical performance of EDLC was mainly dependent on specific surface area of ACF electrode and the diffusion resistance of charge decreased as the mesopore increased.

Electrochemical Characteristics of EDLC with various Organic Electrolytes (유기전해질에 따른 EDLC의 전기화학적 특성)

  • Yang Chun-Mo;Lee J.K.;Cho W.I.;Cho B.W.;Rim Byung-O
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.113-117
    • /
    • 2001
  • Specific capacitance and charge-discharge rate of EDLC using activated carbon electrode were affected by the compositions of electrolytes, the conditions of charge-discharge and physical properties of activated carbon materials. The activated carbon electrode was prepared by dip coating method. Charge-discharge test and electrochemical experiments were carried out for various kinds of organic electrolytes. Effects of charge and discharge current density on the specific capacitance were studied. Characteristics of leakage current, self-discharge and time-voltage curves in optimum conditions of organic electrolytes were compared with conventional $1M-Et_4NBF_4/PC$ electrolyte. The EDLC using MSP-20(specific surface area: $2000m^2/g$) electrode and $1M-LiPF_6/PC-DEC(1:1)$ was exhibited th highest specific capacitance of 130F/g and low polarization resistances. The EDLC using MSP-20 electrode at $1M-LiPF_6/PC-DEC(1:1)$ was small leak current of 0.0004A for 15min, long voltage retention of 0.8V after 100h and linear time-voltage curves with small IR-drop.

Preparation and Electrochemical Characteristics of DAAQ/CNFs Composite electrode for Supercapacitor (DAAQ가 코팅된 슈퍼커패시터용 CNFs전극 활물질의 제조 및 전기 화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1226-1229
    • /
    • 2004
  • Supercapacitors, also known as electrochemical capacitors, are being extensively studied due to an increasing demand for energy-storage systems. These devices offer many advantages over conventional secondary batteries, which include the ability of fast charge propagation, long cycle-life and better storage efficiency. That is to say supercapacitor bridges the gap between conventional capacitors and batteries. A new type electric double layer capacitor (EDLC) also called supercapacitors. Recently, supercapacitors concerns about their high power density and energy density. So we experiment with EDLC by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. The electrode for supercapacitor was prepared by synthesis of DAAQ covered CNFs. CNFs could be covered with very thin DAAQ oligomer from the results of CV, XRD, DSC, SEM images, and TEM images. Dissolved electrode active material in NMP solution has been drop-coated on carbon plate. Its electrochemical characteristics were investigated by cyclic voltammograms. And compared with different electrolyte of aqueous type. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors with respect to specific capacity and scan rate dependency.

  • PDF