DOI QR코드

DOI QR Code

Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons

  • Received : 2008.05.06
  • Accepted : 2008.06.10
  • Published : 2008.06.30

Abstract

The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by $HNO_3$ and then heat treated at $800^{\circ}C$ were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.

Keywords

References

  1. Kwon, O. J.; Jung, Y. H.; Oh, S. M. J. Power sources 2004, 125, 221. https://doi.org/10.1016/j.jpowsour.2003.08.012
  2. Lee, J.; Kim, J.; Lee, Y.; Yoon, S.; Oh, S. M.; Hyeon, T. Chem. Mater. 2004, 16, 3323. https://doi.org/10.1021/cm034588v
  3. Bonnefoi, L.; Simon, P.; Fauvarque, J. F.; Sarrazin, C.; Dugast, A. J. Power Source 1999, 79, 37. https://doi.org/10.1016/S0378-7753(98)00197-9
  4. Tanahashi, I.; Yoshida, A.; Nishino, A. Denki Kagaku 1988, 56, 892.
  5. Park, S. J.; Jung, W. Y. J. Colloid Interface Sci. 2002, 250, 93. https://doi.org/10.1006/jcis.2002.8309
  6. Inagaki, M.; Radovic, L.R. Carbon 2002, 40, 2263. https://doi.org/10.1016/S0008-6223(02)00067-2
  7. Burke, A. J. Power sources 2000, 91, 37. https://doi.org/10.1016/S0378-7753(00)00485-7
  8. Qiao, W. M.; Korai, Y.; Mochida, I.; Hori, Y.; Maeda, I. Carbon 2002, 40,351. https://doi.org/10.1016/S0008-6223(01)00110-5
  9. Qu, D. J. Power Source 2002, 109, 403. https://doi.org/10.1016/S0378-7753(02)00108-8
  10. Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 3791. https://doi.org/10.1149/1.1837291
  11. An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H. J. Electrochem. Soc. 2002, 149, 1058. https://doi.org/10.1149/1.1491235
  12. Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. https://doi.org/10.1021/ja0345524
  13. Park, S. J.; Jang, Y. S. J. Colloid Interface Sci. 2002, 249, 458. https://doi.org/10.1006/jcis.2002.8269
  14. Park, S. J.; Seo, M. K.; Rhee, K. Y. Carbon 2003, 41, 592. https://doi.org/10.1016/S0008-6223(02)00395-0
  15. Park, S. J.; Seo, M. K.; Rhee, K. Y. J. Phys. Chem. B. 2003, 107, 13100. https://doi.org/10.1021/jp030549v
  16. Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937. https://doi.org/10.1016/S0008-6223(00)00183-4

Cited by

  1. Adsorption of Amine Functionalized Activated Carbons vol.10, pp.3, 2009, https://doi.org/10.5714/CL.2009.10.3.221
  2. Electrochemical Performance of Activated Carbon Electrode Materials with Various Post Treatments for EDLC vol.24, pp.6, 2014, https://doi.org/10.3740/MRSK.2014.24.6.285
  3. Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application vol.71, pp.2, 2014, https://doi.org/10.1007/s00289-013-1073-2
  4. Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor vol.16, pp.2, 2015, https://doi.org/10.5714/CL.2015.16.2.078