DOI QR코드

DOI QR Code

Anion co-doped Titania for Solar Photocatalytic Degradation of Dyes

  • Lee, Young-Seak (Department of Fine Chemical Engineering & Applied Chemistry Chungnam National University) ;
  • Kim, Sang-Jin (Department of Fine Chemical Engineering & Applied Chemistry Chungnam National University) ;
  • Venkateswaran, P. (Department of Fine Chemical Engineering & Applied Chemistry Chungnam National University) ;
  • Jang, Jeen-Seok (Chung Buk Regional Small & Med. Business Administration) ;
  • Kim, Hyuk (Hanil Green Tech Co., LTD.) ;
  • Kim, Jong-Gyu (Hanil Green Tech Co., LTD.)
  • Received : 2008.05.06
  • Accepted : 2008.06.09
  • Published : 2008.06.30

Abstract

In order to investigate the effect of doping C, N, B and F elements on $TiO_2$ for reducing the band gap, the heat treatment of $TiO_2$ was carried out with tetraethylammonium tetrafluoroborate. Through XRD and XPS analysis, the C, N, B and F doped anatase $TiO_2$ was confirmed. According to the increase of temperature during treatment, the particle size was increased due to aggregation of $TiO_2$ with elements (B, C, N and F). To investigate the capacity of photocatalyst for degradation of dye under solar light, the degradation of acridine orange and methylene blue was conducted. The degradation of dyes was carried out successfully under solar light indicating the effect of doping elements (B, C, N and F) on $TiO_2$ for reducing the band gap effectively.

Keywords

References

  1. Khan, S. U. M.; Akikusa, J. J. Phys. Chem. B 1999, 103, 7184. https://doi.org/10.1021/jp990066k
  2. Schiavello, M., Dordrecht, H., "Photoelectrochemistry, Photocatalysis, and Photoreactors: Fundamentals and Developments", Kluwer Academic, Boston, MA, 1985.
  3. Bhatkhande, D. S.; Pangarkar, V. G.; Beenackers A. ACM. J.Chem Technol Biotechnol 2001, 77, 102.
  4. Chiou, C. H.; Juang, R. S. Journal of Hazardous Materials 2007, 149, 1. https://doi.org/10.1016/j.jhazmat.2007.03.035
  5. Yamashita, H.; Honda, M.; Harada, M.; Ichihashi, Y.; Anpo, M.; Hirao, T.; Itoh, N.; Iwamoto, N. J. Phys. Chem. B 1998, 102, 10707. https://doi.org/10.1021/jp982835q
  6. Palanivelu, K.; Im, J. S.: Lee, Y. S. Carbon Science 2007, 8, 214.
  7. Qiu, X.; Burda, C. Chemical Physics 2007, 339, 1. https://doi.org/10.1016/j.chemphys.2007.06.039
  8. Chen, D.; Yang, D.; Wang, Q.; Jiang, Z. Ind. Eng. Chem. Res 2006, 45, 4110. https://doi.org/10.1021/ie0600902
  9. Park, H.; Choi, W. J. Phys. Chem., B 2004, 108, 4086. https://doi.org/10.1021/jp036735i
  10. H.Wang, J.P.Lewis J.Phys.: Condens. Matter 2005, 17, 209. https://doi.org/10.1088/0953-8984/17/21/L01
  11. Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater 2005, 17, 2596. https://doi.org/10.1021/cm049099p
  12. Chen, D.; Jiang, Z.; Geng, J.; Wang, Q.; Yang, D. Ind. Eng. Chem. Res 2007, 46, 2741. https://doi.org/10.1021/ie061491k
  13. Gombac, V.; Rogatis, L. D.; Gasparotto, A.; Vicario, G.; Montini, T.; Barreca, D.; Balducci, G.; Fornasiero, P.; Tondello, E.; Graziani, M. Chemical Physics 2007, 339, 111. https://doi.org/10.1016/j.chemphys.2007.05.024
  14. Li, D.; Haneda, H.; Hishita S.; Ohashi, N. Chem. Mater. 2005, 17, 2588. https://doi.org/10.1021/cm049100k
  15. Yang, J.; Bai, H.; Tan, X.; Lian, J. Applied Surface Science 2006, 253, 1988. https://doi.org/10.1016/j.apsusc.2006.03.078
  16. Ren.W,Ai.Z.Jia.F,Zang.L Fan.X.Zou.Z. Appl. Cata.B Env. 2007, 18, 105604.
  17. Chen, C.; Bai, H.; Chang, S.; Chang, C.; Den, W. J. Nanopart. Res. 2006, 365.
  18. Sakthivel, S.; Kisch, H. Chem. Phys. Chem. 2003, 4, 487 https://doi.org/10.1002/cphc.200200554
  19. Swanepoel, R.; Phys, J. J. E. J. Sci .Instrum. 1983, 16, 1214. https://doi.org/10.1088/0022-3735/16/12/023
  20. Yamaki, T.; Shumita, T.; Yamamoto, S. J. Mater. Sci. Lett. 2002, 21, 33. https://doi.org/10.1023/A:1014282225859
  21. Izumi, F.; Bull. Chem. Soc. Jpn. 1978, 51, 1771. https://doi.org/10.1246/bcsj.51.1771
  22. Sagawa, T.; Sueyoshi, R.; Kawaguchi, M.; Kudo, M.; Ihara, H.; Ohkubo, K. Chem. Commun. 2004, 7, 814.
  23. Kumar, P. M.; Badrinarayanan, S.; Sastry. M. Thin solid films 2000, 358, 122. https://doi.org/10.1016/S0040-6090(99)00722-1
  24. Yang, J.; Bai, H.; Tan, H.; Lian, J. Applied Surface Science 2006, 253 1988. https://doi.org/10.1016/j.apsusc.2006.03.078
  25. Volodin, A. M. Catal. Today 2000, 58, 103. https://doi.org/10.1016/S0920-5861(00)00245-5
  26. Reddy, K. M.; Baruwati, B.; Jayalakshmi, M.; Rao, M. M.; Manorama. S. V. Journal of Solid State Chemistry 2005, 178, 3352. https://doi.org/10.1016/j.jssc.2005.08.016
  27. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B 2005, 56, 305. https://doi.org/10.1016/j.apcatb.2004.09.018

Cited by

  1. Efficient Photocatalytic Reduction of CO2 Present in Seawater into Methanol over Cu/C-Co-Doped TiO2 Nanocatalyst Under UV and Natural Sunlight vol.229, pp.7, 2018, https://doi.org/10.1007/s11270-018-3881-3