DOI QR코드

DOI QR Code

Structural Study of the Activated Carbon Fiber using Laser Raman Spectroscopy

  • Roh, Jae-Seung (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology 1)
  • Received : 2008.05.02
  • Accepted : 2008.06.05
  • Published : 2008.06.30

Abstract

This study aims to find a correlation between XRD and Raman result of the activated carbon fibers as a function of its activation degrees. La of the isotropic carbon fiber prepared by oxidation in carbon dioxide gas have been observed using laser Raman spectroscopy. The basic structural parameters of the fibers were evaluated by XRD as well, and compared with Raman result. The La of the carbon fibers were measured to be 25.5 ${\AA}$ from Raman analysis and 23.6 ${\AA}$ from XRD analysis. La of the ACFs were 23.6 ${\AA}$ and 20.4 ${\AA}$, respectively, representing less ordered through activation process. It seems that the $I_D/I_G$ of Raman spectra were related to crystallite size(La). Raman spectroscopy has demonstrated its unique ability to detect structural changes during the activation of the fibers. There was good correlation between the La value obtained from Raman and XRD.

Keywords

References

  1. Lu, S.; Blanco, C.; Rand, B. Carbon 2000, 38, 3.
  2. Sharma, A.; Kyotani, T.; Tomita, A. Carbon 2000, 38, 1977. https://doi.org/10.1016/S0008-6223(00)00045-2
  3. Kercher, A. K.; Nagle, D. C. Carbon 2003, 41, 15. https://doi.org/10.1016/S0008-6223(02)00261-0
  4. Yoshzawa, N.; Maruyama, K.; Yamada, Y.; Zielinska-Blajet, M. Fuel 2000, 79, 1461. https://doi.org/10.1016/S0016-2361(00)00011-9
  5. Oberlin, A.; Villey, M.; Combaz, A. Carbon 1980, 18, 347. https://doi.org/10.1016/0008-6223(80)90006-8
  6. Warren, B. E. The Physical Review 1941, 59, 693. https://doi.org/10.1103/PhysRev.59.693
  7. Yen, T. F.; Erdman, J. G.; Pollack, S. S. Analytical Chemistry 1961, 33, 1587. https://doi.org/10.1021/ac60179a039
  8. Ludwig Schoening, F. R. Fuel 1983, 62, 1315. https://doi.org/10.1016/S0016-2361(83)80016-7
  9. Shim, H. S.; Hurt, R. Carbon 97 July 18-23, 1997, 438.
  10. Roh, J. S.; Suhr, D. S. Carbon Science 2004, 5, 51
  11. Roh, J. S. Carbon Science 2005, 6, 1
  12. Carrot, P. J. M.; Sing, K. S. W., "Characterization of Porous Solid", ed. Unger, K. K.; Rouquerol, J.; Sing, K. S. W.; Kral, H., Elsevier Sci. Publ., Amsterdam, 1988, 77.
  13. Mittelmeijer-Hazeleger, M. C.; Martin-Martinez, J. M. Carbon 1992, 30, 695. https://doi.org/10.1016/0008-6223(92)90188-3
  14. Marsh, H. Carbon 1987, 25, 49. https://doi.org/10.1016/0008-6223(87)90039-X
  15. Ferrari, A. C. Solid State Communications 2007, 143, 47. https://doi.org/10.1016/j.ssc.2007.03.052
  16. Montes-Moran, M. A.; Young. R. J. Carbon 2002, 40, 845. https://doi.org/10.1016/S0008-6223(01)00212-3
  17. Hardwick, L. J.; Novak, P.; Buqa, H. Solid State Ionics. 2006, 177, 2801. https://doi.org/10.1016/j.ssi.2006.03.032
  18. Hirai, T,; Compan, J.; Niwase, K.; Linke, J. Journal of Nuclear Materials 2008, 373, 119. https://doi.org/10.1016/j.jnucmat.2007.05.040
  19. Perraki, M.; Proyer, A.; Mposkos, E.; Kaindl, R.; Hoinkes, G. Earth and Planetary Science Letters 2006, 241, 672. https://doi.org/10.1016/j.epsl.2005.11.014
  20. Kuo, C. T.; Wu, J. Y.; Lu, T. R. Materials Chemistry and Physics 2001, 72, 251. https://doi.org/10.1016/S0254-0584(01)00447-3
  21. Lespade, P.; Al-Jishi, R.; Dresselhaus, M. S. Carbon 1982, 20, 427. https://doi.org/10.1016/0008-6223(82)90043-4
  22. Escribano, R.; Sloan, J. J.; Siddique, N.; Sze, N.; Dudev, T. Vibrational Spectroscopy 2001, 26, 179. https://doi.org/10.1016/S0924-2031(01)00106-0

Cited by

  1. Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes - vol.10, pp.4, 2009, https://doi.org/10.5714/CL.2009.10.4.300
  2. Determination of Graphene Sheets Content in Carbon Materials by Raman Spectroscopy vol.61, pp.9, 2014, https://doi.org/10.1002/jccs.201400162
  3. Synthesis and characterization of free-standing activated carbon/reduced graphene oxide film electrodes for flexible supercapacitors vol.7, pp.71, 2017, https://doi.org/10.1039/C7RA07459J
  4. The optimization of heating temperature for carbon extraction from peat soil vol.298, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/298/1/012019
  5. Structure of sp2-carbon fiber prepared by high-temperature thermomechanical treatment of polyacrylonitrile fiber: a Raman and X-ray diffraction study vol.67, pp.6, 2018, https://doi.org/10.1007/s11172-018-2171-y
  6. Temperature dependent Raman investigation of multiwall carbon nanotubes vol.123, pp.15, 2018, https://doi.org/10.1063/1.5020761
  7. Microwave-assisted hydrothermal synthesis and electrochemical characterization of niobium pentoxide/carbon nanotubes composites vol.34, pp.04, 2019, https://doi.org/10.1557/jmr.2018.444