DOI QR코드

DOI QR Code

Oxidation Kinetics of Pitch Based Carbon Fibers

  • Roh, Jae-Seung (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology 1)
  • Received : 2008.05.02
  • Accepted : 2008.06.04
  • Published : 2008.06.30

Abstract

High modulus pitch based carbon fibers (HM) were exposed to isothermal oxidation using tube furnace in carbon dioxide gas to study the oxidation kinetics under the temperature of $800-1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 1.02~1.42. The oxidation kinetics were evaluated by the reaction-controlling regime (RCR) depending upon the apparent activation energies with the conversion increasing from 0.2 to 0.8. The activation energies decrease from 24.7 to 21.0 kcal/mole with the conversion increasing from 0.2 to 0.8, respectively. According to the RCR, the reaction was limited by more diffusion controlling regime for the HM fibers with the conversion increasing. Therefore, it seems that the oxidation which is under the diffusion controlling regime takes place continuously from the skin to the core of the fiber.

Keywords

References

  1. Mahajan, O. P.; Yarzab R.; Walker Jr. P. L. Feul, 1978, 57, 643.
  2. Sanchez, A. R.; Elguezabal, A. A.; Torre Saenz, L. L. Carbon, 2001, 39, 1367. https://doi.org/10.1016/S0008-6223(00)00253-0
  3. Kasaoka, S.; Sakata, Y.; Kayano, S.; Masuoka, Y. Int. Chem. Eng. 1983, 23, 477.
  4. Hu, Y. Q.; Nikzat, H.; Nawata, M.; Kobayashi, N.; Hasatani, M. Feul, 2001, 80, 2111.
  5. Rafsanjani, H. H.; Jashidi, E.; Rostam-Abadi, M. Carbon, 2002, 40, 1167. https://doi.org/10.1016/S0008-6223(01)00265-2
  6. Lafdi, K.; Bonnamy, S.; Oberlin, A. Carbon, 1992, 30, 533. https://doi.org/10.1016/0008-6223(92)90172-S
  7. Ismail, M. K. Carbon, 1991, 29, 777. https://doi.org/10.1016/0008-6223(91)90017-D
  8. Li, T.; Zheng, X. Carbon, 1995, 33, 469. https://doi.org/10.1016/0008-6223(94)00171-U
  9. Tanabe, Y.; Utasunomiya, M.; Ishibashi, M.; Kyotani, T.; Kaburagi, Y.; Yasuda, E. Carbon, 2002, 40, 1. https://doi.org/10.1016/S0008-6223(01)00269-X
  10. Matsumura, Y.; Xu, X.; Antal, M. J. Jr. Carbon, 1997, 35, 819. https://doi.org/10.1016/S0008-6223(97)00018-3
  11. Tomlinson, J. B.; Freeman, J. J.; Sing, S. W.; Theocharis, C. R. Carbon, 1995, 33, 789. https://doi.org/10.1016/0008-6223(95)00006-Y
  12. Roh, J. S. Carbon Science, 2005, 6, 51.
  13. Roh, J. S. Carbon Science, 2003, 4, 185.
  14. Roh, J. S.; Suhr, D. S. Carbon Science, 2004, 5, 51.
  15. Donnet, J. B.; Bansal, R. C. "Carbon Fibers", 2nd ed., Marcel Decker, inc. 1990, 128.
  16. Marsh, H.; Reinoso, F. R. "Science of Carbon Materials", Universidad de Alicante, Alfredo Candela, 2000, 8.
  17. Zheng, G.; Sano, H.; Suzuki, K.; Kobayashi, K.; Uchiyama, Y.; Cheng, H. M. Carbon, 1999, 37, 2057. https://doi.org/10.1016/S0008-6223(99)00098-6

Cited by

  1. Effect of additional heat-treatment temperature on chemical, microstructural, mechanical, and electrical properties of commercial PAN-based carbon fibers vol.12, pp.4, 2011, https://doi.org/10.5714/CL.2011.12.4.223
  2. Influence of Ozone Treatment on Oxidative Stabilization Behavior of Coal-tar-based Isotropic Pitch Fibers vol.51, pp.5, 2014, https://doi.org/10.12772/TSE.2014.51.265