The incidences of cardiovascular diseases are rapidly increasing worldwide. The electrocardiogram (ECG) is a test to detect and monitor heart issues via electric signals in the heart. Presently, detecting heart disease in real time is not only possible but also easy using the myDAQ data acquisition device and LabVIEW. Hence, this paper proposes a system that can acquire ECG signals in real time, as well as detect heart abnormalities, and through light-emitting diodes (LEDs) it can simultaneously reveal whether a particular waveform is in range or otherwise. The main hardware components used in the system are the myDAQ device, Vernier adapter, and ECG sensor, which are connected to ECG monitoring electrodes for data acquisition from the human body, while further processing is accomplished using the LabVIEW software. In the Results section, the proposed system is compared with some other studies based on the features detected. This system is tested on 10 randomly selected people, and the results are presented in the Simulation Results section.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.10
/
pp.1279-1286
/
2021
The electrocardiogram (ECG) signal is a good indicator for early diagnosis of heart abnormalities. The ECG signal has a different reference normal signal for each person. And it requires lots of data to diagnosis. In this paper, we propose an adaptive OpenCL-based FPGA-GPU hybrid-layer platform to efficiently accelerate ECG signal diagnosis. As a result of diagnosing 19870 number of ECG signals of MIT-BIH arrhythmia database on the platform, the FPGA accelerator takes 1.15s, that the execution time was reduced by 89.94% and the power consumption was reduced by 84.0% compared to the software execution. The GPU accelerator takes 1.87s, that the execution time was reduced by 83.56% and the power consumption was reduced by 62.3% compared to the software execution. Although the proposed FPGA-GPU hybrid platform has a slower diagnostic speed than the FPGA accelerator, it can operate a flexible algorithm according to the situation by using the GPU.
This paper is about the personal identification algorithm using an ECG that has been studied by a few researchers recently. Previously published algorithm can be classified as two methods. One is the method that analyzes ECG features and the other is the morphological analysis of ECG. The main characteristic of proposed algorithm uses together two methods. The algorithm consists of training and testing procedures. In training procedure, the features of all recognition objects' ECG were extracted and the PCA was performed for morphological analysis of ECG. In testing procedure, 6 candidate ECG's were chosen by morphological analysis and then the analysis of features among candidate ECG's was performed for final recognition. We choose 18 ECG files from MIT-BIH Normal Sinus Rhythm Database for estimating algorithm performance. The algorithm extracts 100 heartbeats from each ECG file, and use 40 heartbeats for training and 60 heartbeats for testing. The proposed algorithm shows clearly superior performance in all ECG data, amounting to 90.96% heartbeat recognition rate and 100% ECG recognition rate.
A decrease in coronary blood flow leads to an imbalance between the supply of oxygen to the myocardium and its demand, and reversible or irreversible damage to the myocardium could occur depending on the severity of the resultant ischemia and the duration of the imbalance. This imbalance results in a cascade of ischemic reactions in the following order: metabolic abnormalities, diastolic dysfunction, systolic dysfunction, and electrocardiogram changes. Variant angina is caused by the closure of the coronary artery due to reversible coronary artery spasm, resulting in myocardial ischemia and subsequent chest pain as a clinical symptom. Variant angina may be observed as ST segment elevation in electrocardiogram measured when present in chest pain. However, 12-lead electrocardiogram performed after the patient's chest pain resolves does not help in the diagnosis. Since the duration of chest pain appears to be <15 minutes, it is important to perform the 12-lead electrocardiogram when clinical symptoms are present. If nitroglycerin is administered without performing 12-lead electrocardiogram by 119 pre-hospital paramedics, the chest pain would be resolved, making it impossible to identify changes in the ST segment. Before administration of nitroglycerin, changes in the ST segment must be recorded by performing 12-lead electrocardiogram.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.05a
/
pp.337-340
/
2009
Wireless tele-home-care application gives new possibilities for ECG (electrocardiogram) monitoring system with wearable biomedical sensors. Thus, continuously development of high convenient ECG monitoring system for high-risk cardiac patients is essential. This paper describes to monitor a person's ECG using wearable approach. A wearable belt-type ECG electrode with integrated electronics has been developed and has proven long-term robustness and monitoring of all electrical components. The measured ECG signal is transmitted via an ultra low power consumption wireless sensor node. ECG signals carry a lot clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed thus it bring errors due to motion artifacts and signal size changes. Variable threshold method is used to detect the R-peak which is more accurate and efficient. In order to evaluate the performance analysis, R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research. This concept able to allow patient to follow up critical patients from their home and early detecting rarely occurrences of cardiac arrhythmia.
There is a problem to measure neutral bio-signals during sleep because of inconvenience of attaching lots of sensors. In this study, we measured single electrocardiogram(ECG) signal and analyzed the correlation with sleep. After R-peak detection from ECG signal, we extracted 9 features from time and frequency domain of heart rate variability(HRV). Mean of HRV, RR intervals differing more than 50ms(NN50), and divided by the total number of all RR intervals(pNN50) have significant differences in each sleep stage. Specially, the mean HRV has an average of 87.8% accuracy in classifying sleep and awake status. In the future, the measurement ECG signal minimizes inconvenience of attaching sensors during sleep. Also, it can be substituted for the standard sleep measurement method.
Self-authentication technology using electrocardiogram (ECG) signals is drawing attention as a self-authentication technology that can replace existing bio-authentication. A device that recognizes a digital electronic key can be mounted on a vehicle to wirelessly exchange data with a car, and a function that can lock or unlock a car door or start a car by using a smartphone can be controlled through a smartphone. However, smart keys are vulnerable to security, so smart keys applied with bio-authentication technology were studied to solve this problem and provide driver convenience. A personal authentication algorithm using electrocardiogram was mounted on a watch-type wearable device to authenticate bio, and when personal authentication was completed, it could function as a smart key of a car. The certification rate was 95 per cent achieved. Drivers do not need to have a smart key, and they propose a smart key as an alternative that can safely protect it from loss and hacking. Smart keys using personal authentication technology using electrocardiogram can be applied to various fields through personal authentication and will study methods that can be applied to identification devices using electrocardiogram in the future.
Kim, Tae-Hun;Kim, Se-Yun;Kim, Jeong-Hong;Yun, Byoung-Ju;Park, Kil-Houm
Journal of Communications and Networks
/
v.14
no.1
/
pp.21-26
/
2012
As electrocardiogram (ECG) signals are generally sampled with a frequency of over 200 Hz, a method to compress diagnostic information without losing data is required to store and transmit them efficiently on a wireless personal area network (WPAN). In this paper, an ECG signal compression method for communications onWPAN, which uses feature points based on curvature, is proposed. The feature points of P, Q, R, S, and T waves, which are critical components of the ECG signal, have large curvature values compared to other vertexes. Thus, these vertexes were extracted with the proposed method, which uses local extrema of curvatures. Furthermore, in order to minimize reconstruction errors of the ECG signal, extra vertexes were added according to the iterative vertex selectionmethod. Through the experimental results on the ECG signals from Massachusetts Institute of Technology-Beth Israel hospital arrhythmia database, it was concluded that the vertexes selected by the proposed method preserved all feature points of the ECG signals. In addition, it was more efficient than the amplitude zone time epoch coding method.
Kwon, Oyun;Lee, JeeEun;Kwon, Jun Hwan;Lim, Seong Jun;Yoo, Sun Kook
Journal of Korea Multimedia Society
/
v.23
no.3
/
pp.402-411
/
2020
Power line noise in electrocardiogram signals makes it difficult to diagnose cardiovascular disease. ECG signals without power line noise are needed to increase the accuracy of diagnosis. In this paper, it is proposed DNN(Deep Neural Network) model to remove the power line noise in ECG. The proposed model is learned with noisy ECG, and clean ECG. Performance of the proposed model were performed in various environments(varying amplitude, frequency change, real-time amplitude change). The evaluation used signal-to-noise ratio and root mean square error (RMSE). The difference in evaluation metrics between the noisy ECG signals and the de-noising ECG signals can demonstrate effectiveness as the de-noising model. The proposed DNN model learning result was a decrease in RMSE 0.0224dB and a increase in signal-to-noise ratio 1.048dB. The results performed in various environments showed a decrease in RMSE 1.7672dB and a increase in signal-to-noise ratio 15.1879dB in amplitude changes, a decrease in RMSE 0.0823dB and a increase in signal-to-noise ratio 4.9287dB in frequency changes. Finally, in real-time amplitude changes, RMSE was decreased 0.3886dB and signal-to-noise ratio was increased 11.4536dB. Thus, it was shown that the proposed DNN model can de-noise power line noise in ECG.
The electrocardiogram (ECG) measurement system consists of I/O interface to input the ECG signals from two electrodes, FPGA (Field programmable gate arrays) module to process the signal conditioning, and real time module to control the system. The algorithms based on wavelet transform were developed to remove the noise of the ECG signals and to determine the QRS-waves. Triangular wave tests were conducted to determine the optimal factors of the wavelet filter by analyzing the SNRs (signal to noise ratios) and RMSEs (root mean square errors). The hybrid rule, soft method, and symlets of order 5 were selected as thresholding rule, thresholding method, and mother wavelet, respectively. The developed wavelet filter showed good performance to remove the noise of the triangular waves with 10.98 dB of SNR and 0.140 mV of RMSE. The ECG signals from a total of 6 subjects were measured at different measuring postures such as lying, sitting, and standing. The durations of QRS-waves, the amplitudes of R-waves, the intervals of RR-waves were analyzed by using the finite impulse response (FIR) filter and the developed wavelet filter. The wavelet filter showed good performance to determine the features of QRS-waves, but the FIR filter had some problems to detect the peaks of Q and S waves. The measuring postures affected accuracy and precision of the ECG signals. The noises of the ECG signals were increased due to the movement of the subject during measurement. The results showed that the wavelet filter was a useful tool to remove the noise of the ECG signals and to determine the features of the QRS-waves.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.