• 제목/요약/키워드: EC-Mechanism

검색결과 160건 처리시간 0.024초

Inhibition of Angiotensin II-Induced Vascular Smooth Muscle Cell Hypertrophy by Different Catechins

  • Zheng, Ying;Song, Hye-Jin;Yun, Seok-Hee;Chae, Yeon-Jeong;Jia, Hao;Kim, Chan-Hyung;Ha, Tae-Sun;Sachinidis, Agapios;Ahn, Hee-Yul;Davidge, Sandra T.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권2호
    • /
    • pp.117-123
    • /
    • 2005
  • A cumulative evidence indicates that consumption of tea catechin, flavan-3-ol derived from green tea leaves, lowers the risk of cardiovascular diseases. However, a precise mechanism for this cardiovascular action has not yet been fully understood. In the present study, we investigated the effects of different green tea catechins, such as epigallocatechin-3 gallate (EGCG), epigallocatechin (EGC), epicatechin-3 gallate (ECG), and epicatechin (EC), on angiotensin II (Ang II)-induced hypertrophy in primary cultured rat aortic vascular smooth muscle cell (VSMC). [$^3H$]-leucine incorporation was used to assess VSMC hypertrophy, protein kinase assay, and western blot analysis were used to assess mitogen-activated protein kinase (MAPK) activity, and RT-PCR was used to assess c-jun or c-fos transcription. Ang II increased [$^3H$]-leucine incorporation into VSMC. However, EGCG and ECG, but not EGC or EC, inhibited [$^3H$]-leucine incorporation increased by Ang II. Ang II increased phosphorylation of c-Jun, extracellular-signal regulated kinase (ERK) 1/2 and p38 MAPK in VSMC, however, EGCG and ECG , but not EGC or EC, attenuated c-Jun phosphorylation increased by Ang II. ERK 1/2 and p38 MAPK phosphorylation induced by Ang II were not affected by any catechins. Ang II increased c-jun and c-fos mRNA expression in VSMC, however, EGCG inhibited c-jun but not c-fos mRNA expression induced by Ang II. ECG, EGC and EC did not affect c-jun or c-fos mRNA expression induced by Ang II. Our findings indicate that the galloyl group in the position 3 of the catechin structure of EGCG or ECG is essential for inhibiting VSMC hypertrophy induced by Ang II via the specific inhibition of JNK signaling pathway, which may explain the beneficial effects of green tea catechin on the pathogenesis of cardiovascular diseases observed in several epidemiological studies.

Acetolactate synthase 저해 제초제인 chlorsulfuron의 작용기작 (Herbicidal action mechanism of chlorsulfuron)

  • 김성문;김용호;허장현;한대성
    • 농약과학회지
    • /
    • 제2권3호
    • /
    • pp.1-20
    • /
    • 1998
  • Chlorsulfuron, one of sulfonylurea herbicides acts through inhibition of acetolactate syuthase (EC 4.1.3.18; ALS, also known as acetohydroxyacid synthase) in the branched-chain amino acid biosynthesis process. After chlorsulfuron-ALS interaction, many physiological and metabolic disruptions occur in plants. However, it is not clear how this chlorsulfuron-ALS interaction affects those physiological and metabolic processes and how this interaction leads subsequently to plant death. Several researchers suggested that the death of chlorsulfuron-treated plants might be due to a shortage of the branched-chain amino acids, an accumulation of toxic metabolites, and/or a depletion of photoassimilates. It remains as a mystery presently, however, if such changes result in the plant death. In this review, we discussed how the chlorsulfuran-ALS interaction leads to physiological and metabolic disruptions in plants.

  • PDF

Bacillus subtilis가 생산하는 비특이적 $\beta$-fructofuransoidase의 부분정제 및 특성 (Partial Purification and Properties of Non-specific $\beta$ -fructofuranosidase Produced by Bacillus subtilis)

  • 송근섭;엄태붕
    • 한국미생물·생명공학회지
    • /
    • 제18권5호
    • /
    • pp.484-489
    • /
    • 1990
  • Bacillus subtilis의 세포내 이눌라아제가 부분정제되고 그의 작용 모드와 일반적 특성이 조사되었다. 이 효소는 gel filtration에 의하여 분자량을 추정하였을 때 49,000이었고, 등진점은 5.2 이었다. 기질에 대한 친화성의 지표인 Km값은 설탕에 대해서는 10mM, 라피노오스에 대해서는 18mM 이었다. 이 효소는 산성쪽에서는 불안정한 단백질로서 pH6.6에서 최대 활성을 보였으며 최적온도는 10분간 반응시켰을 때 50'C였다. 이 효소의 작용모든는 이눌린같은 구조를 가지는 과당 중합체를 과당 끝부분으로부터 하나씩 잘라가는 exo-cleavage 형이었다.

  • PDF

Study of the Electrochemical Redox Characteristics of Some Triazolopyrimidines

  • Maghraby, A.A. El;Elenien, G.M. Abou;Shehata, K.I.
    • 전기화학회지
    • /
    • 제10권3호
    • /
    • pp.159-168
    • /
    • 2007
  • An electrochemical study related to the redox characteristics of Ethyl-3-acetyl-6-methyl-1, 4-diphenyl-4, 3a-dihydro-1, 3, 4-triazolino[3, 4-a] pyrimidine-5-carboxylate ester and its derivatives (1a-f) and (2a-e) in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), dimethylsulphoxide (DMSO) and tetrahydrofurane (THF) using $0.1\;mol\;dm^{-3}$ tetrabutylammonium perchlorate (TBAP) as a supporting electrolyte at platinum, glassy carbon and gold electrodes, has been performed using cyclic voltammetry (CV). Controlled potential electrolysis (CPE) is also carried out to elucidate the course of different electrochemical reactions through the separation and identification of the intermediates and final electrolysis products. The redox mechanism is suggested and proved. It was found that all the investigated compounds in all solvents are oxidized in a single irreversible one electron donating process following the well known pattern of the EC-mechanism to give a dimer. On the other hand, these compounds are reduced in a single irreversible one electron step to form the anion radical, which is basic enough to proton from the media forming the radical which undergoes tautomerization and then dimerization processes to give also another bis-compound through N-N linkage formation.

Characterization of Aspartate Aminotransferase Isoenzymes from Leaves of Lupinus albus L. cv Estoril

  • Martins, Maria Luisa Louro;De Freitas Barbosa, Miguel Pedro;De Varennes E Mendonca, Amarilis Paula Alberti
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.220-227
    • /
    • 2002
  • Two aspartate aminoransferase (EC 2.6.1.1) isoenzymes (AAT-1 and AAT-2) from Lupinus albus L. cv Estoril were separated, purified, and characterized. The molecular weight, pI value, optimum pH, optimum temperature, and thermodynamic parameters for thermal inactivation of both isoenzymes were obtained. Studies of the kinetic mechanism, and the kinetics of product inhibition and high substrate concentration inhibition, were performed. The effect of some divalent ions and irreversible inhibitors on both AAT isoenzymes was also studied. Native PAGE showed a higher molecular weight for AAT-2 compared with AAT-1. AAT-1 appears to be more anionic than AAT-2, which was suggested by the anion exchange chromatography. SDS-PAGE showed a similar sub-unit molecular weight for both isoenzymes. The optimum pH (between 8,0 and 9.0) and temperature ($60-65^{\circ}C$) were similar for both isoenzymes. In the temperature range of $45-65^{\circ}C$, AAT-2 has higher thermostability than AAT-1. Both isoenzymes showed a high affinity for keto-acid substrates, as well as a higher affinity to aspartate than glutamate. Manganese ions induced an increase in both AAT isoenzymes activities, but no cooperative effect was detected. Among the inhibitors tested, hydroxylamine affected both isoenzymes activity by an irreversible inhibition mechanism.

A Correlation Between Crack Growth and Abrasion for Selected Rubber Compounds

  • Lee, Hyunsang;Wang, Wonseok;Shin, Beomsu;Kang, Seong Lak;Gupta, Kailash Chandra;Nah, Changwoon
    • Elastomers and Composites
    • /
    • 제54권4호
    • /
    • pp.313-320
    • /
    • 2019
  • A typical wear pattern was reported to resemble the fatigue crack growth behavior considering its mechanism, especially for amorphous rubbers such as styrene-butadiene rubber (SBR). In this study, the wear and crack growth rates were correlated using two separate experiments for carbon black and silica-reinforced selected rubber compounds. The wear rate was determined using a blade-type abrasion tester, where the frictional energy input during wearing was measured. The crack propagation rate was determined under different tearing energy inputs using a home-made fatigue tester, with a pure-shear test specimen containing pre-cracks. The rates of abrasion and crack propagation were plotted on a log-log scale as a function of frictional and tearing energies, respectively. Reasonable agreement was observed, indicating that the major mechanism of the abrasion pattern involved repeated crack propagation.

Immobilization of Alcohol Dehydrogenase in Membrane: Fouling Mechanism at Different Transmembrane Pressure

  • Marpani, Fauziah;Zulkifli, Muhammad Kiflain;Ismail, Farazatul Harnani;Pauzi, Syazana Mohamad
    • 대한화학회지
    • /
    • 제63권4호
    • /
    • pp.260-265
    • /
    • 2019
  • Alcohol dehydrogenase (ADH) (EC 1.1.1.1) was selected as the enzyme which will be immobilized on ultrafiltration membrane by fouling with different transmembrane pressure of 1, 2 and 3 bars. ADH will catalyze formaldehyde (CHOH) to methanol ($CH_3OH$) and simultaneously oxidized nicotinamide adenine dinucleotide (NADH) to $NAD^+$. The concentration of enzyme and pH are fixed at 0.1 mg/ml and pH 7.0 respectively. The objective of the study focuses on the effect of different transmembrane pressure (TMP) on enzyme immobilization in term of permeate flux, observed rejection, enzyme loading and fouling mechanism. The results showed that at 1 bar holds the lowest enzyme loading which is 1.085 mg while 2 bar holds the highest enzyme loading which is 1.357 mg out of 3.0 mg as the initial enzyme feed. The permeate flux for each TMP decreased with increasing cumulative permeate volume. The observed rejection is linearly correlated with the TMP where increase in TMP will cause a higher observed rejection. Hermia model predicted that at irreversible fouling with standard blocking dominates at TMP of 3 bar, while cake layer and intermediate blocking dominates at 1 and 2 bar respectively.

Numerical simulation on the cyclic behavior of ultra-high performance concrete filled steel tubular column

  • Heng Cai;Fangqian Deng
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.693-707
    • /
    • 2023
  • In order to deeply reveal the working mechanism of ultra-high performance concrete (UHPC) filled steel tubular columns (UHPCFSTs) under cyclic loading, a three-dimension (3D) macro-mesoscale finite element (FE) model was established considering the randomness of steel fibers and the damage of UHPC. Model correctness and reliability were verified based on the experimental results. Next, the whole failure process of UHPC reinforced with steel fibers, passive confinement effect and internal force distribution laws were comprehensively analyzed and discussed. Finally, a simplified and practical method was proposed for predicting the ultimate bending strengths of UHPCFSTs. It was found that the non-uniform confinement effect of steel tube occurred when the drift ratio exceeded 0.5%, while the confining stress increased then decreased afterwards. There was preferable synergy between the steel tube and UHPC until failure. Compared with experimental results, the ultimate bending strengths of UHPCFSTs were undervalued by the current code provisions such as AISC360-10, EC4 and GB50936 with computed mean values (MVs) of 0.855, 0.880 and 0.836, respectively. The proposed practical method was highly accurate, as evidenced by a mean value of 1.058.

세포 외 $\textrm{K}^{+}$의한 혈관 수축신 조절 기전: 혈관평활근 수축성과 내피세포 의존성 이완에 미치는 영향 (Regulatory Mechanism of Vascular Contractility by Extracellular $\textrm{K}^{+}$: Effect on Endothelium-Dependent Relaxation and Vascular Smooth Muscle Contractility)

  • 유지영;설근희;서석효;안재호
    • Journal of Chest Surgery
    • /
    • 제37권3호
    • /
    • pp.210-219
    • /
    • 2004
  • 외부 자극에 의하여 세포 내 $Ca^2$$^{+}$이 증가하면 세포 내 $K^{+}$이 유출되어 세포 외 $K^{+}$ 농도는 수 mM 범위에서 증가할 수 있다. 이러한 세포 외 $K^{+}$의 증가가 혈관 수축성에 미치는 영향을 규명하고자, 세포 외 $K^{+}$가 혈관평활근 수축성, 내피세포 의존성 이완과 혈관내피세포 $Ca^2$$^{+}$ 농도에 미치는 영향을 알아보고자 하였다. 토끼에서 분리한 경동맥, 상장간막동맥 분지, 기저동맥과 쥐의 대동맥에서 등장성 수축을 기록하였으며 배양한 쥐의 대동맥 혈관내피세포와 인간 제대정맥 내피세포에서 세포 내 $Ca^2$$^{+}$ 변화를 측정하였다. 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하는 경우 도관동맥인 토끼 경동맥은 수축성에 변화가 없는 반면 저항혈관인 기저동맥과 상장간막동맥분지는 이완하였다. 이러한 $K^{+}$ 유발 이완은 혈관 종류에 따라 차이가 있었는데 기저동맥에서는 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하였을 때보다 세포 외 $K^{+}$ 농도를 1에서 3 mM로 증가하였을 때 더 크게 이완하였으며 상장간막동맥의 분지에서는 반대로 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하였을 때 더 크게 이완하였다. 그리고 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하였을 때의 이완은 $Ba^2$$^{+}$에 의하여 억제되는 반면 1에서 3 mM로 증가에 의한 이완은 억제되지 않았다. 쥐 대동맥에서도 토끼 경동맥과 동일한 효과가 관찰되었는데 세포 외 $K^{+}$ 농도를 6 mM에서 12 mM로 변화시켜도 norepinephrine혹은 prostaglandin $F_2$$_{\alpha}$에 의한 수축력은 유의한 변화가 없었다. 또한 세포 외 $K^{+}$ 농도를 점차 증가시키는 경우 12 mM 이상 증가가 되면 혈관평활근이 수축하기 시작하였지만 12 mM 이하의 증가에 의해서는 혈관평활근의 수축력은 증가하지 않았다. 한편 쥐 대동맥에서 acetylcholine에 의하여 유발된 내피세포 의존성 이완은 세포 외 $K^{+}$ 농도를 정상 6 mM에서 12 mM로 증가시키면 억제되었다. 한편 배양한 쥐 대동맥 내피세포에서는 acetylcholine 혹은 ATP에 의하여 세포 내 $Ca^2$$^{+}$이 증가하였다. 증가한 세포 내 $Ca^2$$^{+}$은 세포 외 $K^{+}$농도를 6 mM에서 12 mM로 증가시키면 가역적 및 농도 의존적으로 감소하였다. 세포 외 $K^{+}$ 증가에 의한 세포 내 $Ca^2$$^{+}$ 억제 효과는 인간 제대정맥 내피세포에서도 관찰되었다. 그리고 세포 외 $K^{+}$ 증가에 의한 내피세포 의존성 이완의 억제효과는 $Na^{+}$- $K^{+}$ pump 억제제인 ouabain과 $Na^{+}$-C $a^2$$^{+}$exchanger 억제제인 N $i^2$$^{+}$에 의하여 억제되었다. 이러한 실험 결과로 미루어 세포 외 $K^+$의 증가는 저항혈관 평활근을 이완시키는데 그 기전은 혈관 종류에 따라 차이가 있었다. 그리고 세포 외 $K^{+}$의 증가는 혈관내피세포 $Ca^2$$^{+}$을 감소시켜 내피세포 의존성 이완을 억제하는데 이는 $Na^2$$^{+}$- $K^2$$^{+}$pump를 활성화시켜 일어나는 것으로 생각된다.

Characteristics of the Inhibitory Action of Protease Inhibitors on the Glucose-6-phosphate Transporter

  • Choi, Joon-Sig;Shin, Jeong-Sook;Choi, Hong-Sug;Park, Jong-Sang
    • BMB Reports
    • /
    • 제30권2호
    • /
    • pp.157-161
    • /
    • 1997
  • The present paper reports characteristics and specificity of the inhibitory action of $N^{\alpha}-tosyl-L-lysine-chloromethyl\;ketone$ (TLCK) and $N^{\alpha}-tosyl-L-phenylalanine-chloromethyl\;ketone$ (TPCK) on the glucose6-phosphate transporter of rat liver microsomes. The TLCK-induced inhibition was pH dependent. The inhibition constants for TPCK were determined by following pseudo-Lst order reaction mechanism. The inhibition was protected by preincubation with excess amount of glucose-6-phosphate. The results proved that (a) TLCK inactivates the microsomal glucose-6-phosphate transporter, (b) the inhibition results from the modification of sulfhydryl groups of the transporter.

  • PDF