• Title/Summary/Keyword: EC level

Search Result 553, Processing Time 0.026 seconds

Molecular Cloning, Characterization and Functional Analysis of a 2C-methyl-D-erythritol 2, 4-cyclodiphosphate Synthase Gene from Ginkgo biloba

  • Gao, Shi;Lin, Juan;Liu, Xuefen;Deng, Zhongxiang;Li, Yingjun;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.502-510
    • /
    • 2006
  • 2C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase (MECPS, EC: 4.6.1.12) is the fifth enzyme of the non-mevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and is involved in the methylerythritol phosphate (MEP) pathway for ginkgolide biosynthesis. The full-length mecps cDNA sequence (designated as Gbmecps) was cloned and characterized for the first time from gymnosperm plant species, Ginkgo biloba, using RACE (rapid amplification of cDNA ends) technique. The full-length cDNA of Gbmecps was 874 bp containing a 720 bp open reading frame (ORF) encoding a peptide of 239 amino acids with a calculated molecular mass of 26.03 kDa and an isoelectric point of 8.83. Comparative and bioinformatic analyses revealed that GbMECPS showed extensive homology with MECPSs from other species and contained conserved residues owned by the MECPS protein family. Phylogenetic analysis indicated that GbMECPS was more ancient than other plant MECPSs. Tissue expression pattern analysis indicated that GbMECPS expressed the highest in roots, followed by in leaves, and the lowest in seeds. The color complementation assay indicated that GbMECPS could accelerate the accumulation of $\beta$-carotene. The cloning, characterization and functional analysis of GbMECPS will be helpful to understand more about the role of MECPS involved in the ginkgolides biosynthesis at the molecular level.

Complete Nucleotide Sequence Analysis and Structural Comparison of 3 members of Tomato Phenylalanine ammonia-lyase gene (토마토에서 분리한 3종류의 Phenylalanine ammonia-lyase gene에 대한 염기서열 및 특성비교)

  • 여윤수;예완해;이신우;배신철;류진창;장영덕
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • Phenylalanine ammonia-lyase (PAL; EC 4, 3, 1, 5) genomic clones were isolated from tomato(Lycopersicon esculentum L.) genomic DNA libraries using tomato PAL5 cDNA sequences as probes. The nucleotide sequences of tPAL1, tPAL4 and tPAL5 were compared. tPAL5 contains an open reading frame encoding a polypeptide of 722 amino acids, interrupted by a 710 bp intron in the codon for the amino acid 139. tPAL1 encodes a polypeptide of 249 amino acids which is much shorter than tPAL5 gene due to a premature stop codon and does not contain an intron. tPAL4 encodes a polypeptide of 357 amino acids, interrupted by a 305 bp intron in the codon for the amino acid 138. Premature stop codons observed in tPAL1 and tPAL4 gene produce a short polypeptide rather than a normal polypeptide (722 aa). tPALl shows 87.2% homology with tPAL4 and 85.3% homology with tPAL5 gene whereas tPAL4 showes 91.4% homology with tPAL5 at nucleotide level. In general, phylogenetic analysis showed that genes isolated from tomato, potato, and sweet potato were belong to the same group and another dicot plants such as parsley, bean, soybean, pea and alfalfa formed another group. PAL genes isolated from rice and yeast showed very low homology with other PAL genes and formed the other group.

  • PDF

Purification and Characterization of Mitochondrial Malate Dehydrogenase during Ovarian Development in Aedes aegypti L. (Aedes aegypti L. 난성숙과정중 생성되는 Mitochondrial Malate Dehydrogenase의 정제 및 특성)

  • 김인규;이강석;정규회;박영민;성기창
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.181-190
    • /
    • 1995
  • Malate dehydrogenase in the mosquito ovary after a blood meal, Aedes aegypti, was purified and characterized. MDH purification steps involved DEAE-Sepharose, S-Sepharose and Cibacron blue affinity chromatography. The purified MDH was 70,000 daltons in molecular weight and was a homodimer consisting of tow identical subunits. Optimal activity of purified MDH was obtained pH 9.0-9.2 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With obtained pH 9.0-92 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With malate as substrate, purified mitochondrial MDH (1.28$\times$${10}^{-4}$ M) had lower Km value than cytoplasmic MDH (8.92x${10}^{-3}$ M). MDH activity was inhibited by citrate, $\alpha$-ketoglutarate, and ATP. Inhibition of MDH activity by ATP and citrate was less in malate-oxaloacetate reaction and in oxaloacetate-malate reaction. MDH activity was completely inhibited by ATP in oxaloacetate-malate reaction and not inhibited by citrate in malate-oxaloacetate reaction. Temporal activity change of MDH is similar to that of isocitrate dehydrogenase in the ovary after blood feeding; their activities in the ovary began to rise at 18 hours after a blood meal, and reached at the maximal level at 48 hours.

  • PDF

Survey on the Farms in Main Producing Area of Job's Tears (율무 주산 지역 농가의 실태조사)

  • 강치훈;박기준;유창재;김두환
    • Korean Journal of Plant Resources
    • /
    • v.14 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • This survey was carried out to collect the basic informations for the improvement of cultivation in job's tears (Coix lachryma-jobi L.) by investigating the general facts, farming practices, growth characteristics, grain yield, and chemical properties of soil in Yonchon-gun farms. The age of farmers were over 51 and the cultivated area was small. Most farmers were self-laboring and produced seeds on their land. Sowing method was usually drilling by hand, 64% of farms had the density of 2000-3500 plant per 10 a, amount of fertilizer application was diverse and the number of pest control was a few. The averages of plant height, number of main culm node, culm diameter, tiller number of plant, thousand grain weight, and grain yield were 184 cm, 10, 10 mm, 14, 108 g, and 341 kg/10a, respectively. The averages of pH, organic matter, $P_2O_5$, K, and EC of soil after harvest were 5.8, 1.1 g/kg, 385 mg/kg, 0.48 cmol+/kg, and 0.21 dS/m, respectively. Grain yield and hardness were negatively correlated -0.7442 at the level of P=0.01.

  • PDF

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF

Field Applicability of Low Temperature Thermal Desorption Equipment through Environmental Impact Analysis of Remediated Soil and Exhaust Gas (정화토양 및 배출가스의 환경적 특성 분석을 통한 저온열탈착장치의 현장 적용성 평가)

  • Oh, Cham-Teut;Yi, Yong-Min;Kim, Young-Soung;Jeon, Woo-Jin;Park, Gwang-Jin;Kim, Chi-Kyung;Sung, Ki-June;Chang, Yoon-Young;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.76-85
    • /
    • 2012
  • Geochemical and ecological properties of remediated soil and gas exhausted from a low-temperature thermal desorption (LTTD) process were analyzed to assess the environmental impact of LTTD treatment. Soil characteristics were examined with regard to the chemical (EC, CEC, and organic matter) and the ecological (dehydrogenase activity, germination rate of Brassica juncea, and growth of Eisenia andrei) properties. The exhaust gases were analyzed based on the Air Quality Act in Korea as well as volatile organic compounds (VOCs) and mixed odor. Level of organic Organic matter of the soil treated by LTTD process was slightly decreased compared to that of the original soil because the heating temperature ($200^{\circ}C$) and retention time (less than 15 minutes) were neither high nor long enough for the oxidation of organic matter. The LTTD process results in reducing TPH of the contaminated soil from $5,133{\pm}508$ mg/kg to $272{\pm}107$ mg/kg while preserving soil properties. Analysis results of the exhaust gases from the LTTD process satisfied discharge standard of Air Quality Law in Korea. Concentration of VOCs including acetaldehyde, propionaldehyde, butyraldehyde and valeraldehyde in circulation gas volatilized from contaminated soil were effectively reduced in the regenerative thermal oxidizer and all satisfied the legal standards. Showing ecologically improved properties of contaminated soil after LTTD process and environmentally tolerable impact of the exhaust gas, LTTD treatment of TPH-contaminated soil is an environmentally acceptable technology.

The C-terminal Phosphorylation Sites of eel Follicle-Stimulating Hormone Receptor are Important Role in the Signal Transduction

  • Kim, Jeong-Min;Byambaragchaa, Munkhzaya;Kang, Myung-Hwa;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.22 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • The large extracellular domain of glycoprotein hormone receptors is a unique feature within the G protein-coupled receptors (GPCRs) family. After interaction with the hormone, the receptor becomes coupled to Gs, which, in turn stimulates adenylyl cyclase and the production of cAMP. Potential phosphorylation sites exist in the C-terminal region of GPCRs. The experiments described herein represent attempts to determine the functions of the eel follicle-stimulating hormone receptor (eelFSHR). We constructed a mutant of eelFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 614 (eelFSHR-t614). The eelFSHR-t614 lacked all potential phosphorylation sites present in the C-terminal region of eelFSHR. In order to obtain the eelFSHR ligand, we produced recombinant follicle-stimulating hormone ($rec-eelFSH{\beta}/{\alpha}$) in the CHO-suspension cells. The expression level was 2-3 times higher than that of the transient expression of eelFSH in attached CHO-K1 cells. The molecular weight of the $rec-eelFSH{\beta}/{\alpha}$ protein was identified to be approximately 34 kDa. The cells expressing eelFSHR-t614 showed an increase in agonist-induced cAMP responsiveness. The maximal cAMP responses of cells expressing eelFSHR-t614 were lower than those of cells expressing eelFSHR-wild type (eelFSHR-WT). The $EC_{50}$ following C-terminal deletion in CHO-K1 cells was approximately 60.4% of that of eelFSHR-WT. The maximal response in eelFSHR-t614 cells was also drastically lower than that of eelFSHR-WT. We also found similar results in PathHunter Parental cells expressing ${\beta}$-arrestin. Thus, these data provide evidence that the truncation of the C-terminal cytoplasmic tail phosphorylation sites in the eelFSHR greatly decreased cAMP responsiveness and maximal response in both CHO-K1 cells and Path-Hunter Parental cells expressing ${\beta}$-arrestin.

Fate of Fenitrothion aerially applied to the Pine Forest (항공살포에 따른 Fenitrothion의 산림환경 중 행적)

  • Kim, Dae-Gyun;Kim, Chan-Sub;Lee, Byung-Moo;Choi, Ju-Hyeon;Park, Jae-Eup
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.322-327
    • /
    • 2012
  • Fate of fenitrothion aerially sprayed to control pine wood nematode (Bursaphelenchus xylophilus) was studied in a forest of Haman area. And the monitoring of fenitrothion was conducted in a stream flowed from forest area of Gijang sprayed fenitrothion. Fenitrothion 50% EC was diluted 100 times and applied two or three times using helicopter in Haman and Gijang, respectively. Average fenitrothion deposits on forest floor ranged from 6% of standard aerial application rate. Following to the second application, fenitrothion deposits in the pine needle ranged from 0.6 to 0.9 mg/kg and then rapidly decreased to 0.01 mg/kg after 109 days. Deposits on the plant washed off by rainfall and reached to soil surface was 1.3% of the application rate. All of fenitrothion on the ground resided in the forest floor covering the soil surface, where fenitrothion residues were decreased to a tenth at 109 days after the second application, but they were not detected in sol beneath it. And the only low level of fenitrothion residues, 0.0009 mg/L, was detected in runnel of the experimental forest just after aerial application. The concentration of fenitrothion in effluent from Gijang area was less than detection limit (0.0001 mg/L) during the entire period.

The Contamination Characteristics of the Nanji Uncontrolled Landfill and its Surrounding Hydrogeologic Environment (난지도 매립지 주변 지하수환경의 오염 특성에 관한 연구)

  • 이철효;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 1996
  • The Nanji landfill is one of the biggest uncontrolled landfill in terms of its size and scale in the world. Because the landfill was constructed on the very vulnerable alluvial deposit installing no pollution control systems such as bottom liner and leachate collection systems, it has caused a serious adverse effect to near-by groundwater and surface water systems. A through remedial investigation comprising plume detection and site-characterization was performed to design the remedial measure. As a part the investigation, comprehensive water quality study was conducted, using ten existing observation wells and one bundle type monitoring well, to determine the contaminant indicators for the plume delineation and to define the vertical and horizontal variation of specific contaminants via distances from the landfill. The results clearly shows that EC and temperature are a good pollution indicators and the vertical concentrations of specific contaminants measured in the fully screened wells are 20 to 90% more than those measured at the same depth in bundle type well which is located just 2 m apart. This paper presents a cost effective monitoring and sampling method to define the contaminant plume and obtain a basic data for leachate control measures.

  • PDF

Effect of Applied Amount and Time of Rice Bran on the Rice Growth Condition (쌀겨시용량 및 시용시기가 벼 생육환경에 미치는 영향)

  • Kim, Jong-Gu;Lee, Sang-Bok;Lee, Kyeong-Bo;Lee, Deog-Bag;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.15-19
    • /
    • 2001
  • This study was carried out to investigate the effect of application time and amount of rice bran on rice yield, weed occurrence, and chemical change in water as applied at the level of 1.8 Mg/ha (1.8RB) and 3.5 Mg/ha (3.5RB) through field and pot experiment. $Nitrate(NO_3\;^-)$ in the surface water and the percolated water through pot were high in application of 3.5RB, and similar in application of 1.8RB as compared to chemical fertilization. Electric conductivity in surface water were higher by application of rice bran until 25 days after rice bran application. $NH_4-N$ in soil were lower in application of rice bran, and $NO_3-N$ in soil were higher in 3.5RB at tillering stage and panicle formation stage of rice. Rice bran application(3.5RB) showed 68% of weed occurrence as compared to that of chemical fertilization. Rice yield were increased by heavy application of rice bran; 4.41 Mg/ha in 1.8RB and 4.87 Mg/ha in 3.5RB, and top dressing of nitrogen at panicle formation stage caused to increased rice yield by $14{\sim}15%$. Rice yield was also increased by early application of rice bran.

  • PDF