DOI QR코드

DOI QR Code

Field Applicability of Low Temperature Thermal Desorption Equipment through Environmental Impact Analysis of Remediated Soil and Exhaust Gas

정화토양 및 배출가스의 환경적 특성 분석을 통한 저온열탈착장치의 현장 적용성 평가

  • Received : 2012.05.07
  • Accepted : 2012.05.30
  • Published : 2012.06.30

Abstract

Geochemical and ecological properties of remediated soil and gas exhausted from a low-temperature thermal desorption (LTTD) process were analyzed to assess the environmental impact of LTTD treatment. Soil characteristics were examined with regard to the chemical (EC, CEC, and organic matter) and the ecological (dehydrogenase activity, germination rate of Brassica juncea, and growth of Eisenia andrei) properties. The exhaust gases were analyzed based on the Air Quality Act in Korea as well as volatile organic compounds (VOCs) and mixed odor. Level of organic Organic matter of the soil treated by LTTD process was slightly decreased compared to that of the original soil because the heating temperature ($200^{\circ}C$) and retention time (less than 15 minutes) were neither high nor long enough for the oxidation of organic matter. The LTTD process results in reducing TPH of the contaminated soil from $5,133{\pm}508$ mg/kg to $272{\pm}107$ mg/kg while preserving soil properties. Analysis results of the exhaust gases from the LTTD process satisfied discharge standard of Air Quality Law in Korea. Concentration of VOCs including acetaldehyde, propionaldehyde, butyraldehyde and valeraldehyde in circulation gas volatilized from contaminated soil were effectively reduced in the regenerative thermal oxidizer and all satisfied the legal standards. Showing ecologically improved properties of contaminated soil after LTTD process and environmentally tolerable impact of the exhaust gas, LTTD treatment of TPH-contaminated soil is an environmentally acceptable technology.

Keywords

References

  1. 김국진, 이선화, 박광진, 김치경, 이철효, 김도선, 조석희, 장윤영, 2008, 열순환식 저온열탈착 정화장치의 개발 및 유류오염 토양 현장 적용, 지하수토양환경, 13(4), 62-68.
  2. 남윤선, 이인숙, 배범한, 2008, 메밀경작에 의한 논토양 내 아연 존재형태 및 탈수소효소-활성도 변화, 대한환경공학회, 30(11), 1154-1160.
  3. 농촌진흥청, 1999, 작물별 시비처방 기준, 광문당, 8-51.
  4. 민형식, 양인호, 정상조, 김한승, 2009, 직접 가열식 열탈착 공정 을 이용한 유류오염토양의 정화, 지하수토양환경, 14(5), 62-70.
  5. 서재도, 2011, 기름오염토양 복원을 위한 열탈착 장치의 효율적 운전에 관한 연구, 아주대학교 석사학위논문, 44-45.
  6. 양지원, 이유진, 2007, 국내 오염토양 복원 현황과 기술 동향, 한국화학공학회, 45(4), 311-318.
  7. 장기운, 조성현, 곽정하, 1999, 계분 및 돈분퇴비의 연용에 의한 토양의 물리화학성 변화, 유기성자원학회, 7(1), 23-30.
  8. 정병간, 최정원, 윤을수, 윤정희, 김유학, 정구복, 1998, 우리나라 시설원예 재배지 토양 화학적특성, 한국토양비료학회, 31(1), 9-15.
  9. 정병간, 최정원, 윤을수, 윤정희, 김유학, 2001, 우리나라 밭 토양 화학적 특성, 한국토양비료학회, 34(5), 326-332.
  10. 조원실, 조경숙, 2008, 갯벌 미생물 활성 및 다양성에 미치는 Methyl tert-Butyl Ether(MTBE)와 MTBE 대사산물의 영향, 한국미생물.생명공학회지, 36(4), 336-342.
  11. 주성현, 정성철, 1998, 대구시 가로수 토양의 이화학적 성질, 중금속 함량, 탈수소효소 활성도에 관한 연구, 환경과학논문집, 12, 49-56.
  12. 최상일, 김강홍, 2006, 고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구, 지하수토양환경, 11(6), 61-68.
  13. 하상안, 엄혜경, 2007, 저온 열 탈착에 의한 유류 오염토의 처리 조건의 연구, 대한환경공학회, 29(8), 956-960.
  14. 하상안, 유미영, 2008, 폐열 재순환 장치의 운전에 따른 저온 열탈착 장치의 경제성 평가, 한국폐기물자원순환학회 춘계학술연구회발표논문집, 한국폐기물자원순환학회, 순천대학교, p. 520-523.
  15. 한국조경학회, 2002, 조경설계기준, 기문당.
  16. 홍선화, 이상민, 이은영, 2011, 토양미생물 복원제를 이용한 유류로 오염된 토양의 복원, 한국미생물생명공학회지, 39(3), 301-307.
  17. 환경부, 2007a, 오염토양 정화방법 가이드라인, 환경부 토양지하수과, 11-1480000-000841-01, 14 p.
  18. 환경부, 2007b, 2007년도 전국 특정토양오염관리대상시설 관리 현황.
  19. Baligar, V.C., Wright, R.J., and Smedley, M.D., 1991, Enzyme activities in appalachian soil: 4. dehydrogenase, Commun. Soil Sci. Plant Anal., 22(17-18), 1797-1804. https://doi.org/10.1080/00103629109368536
  20. Bluskov, S., Arocena, J.M., Omotoso, O.O., and Young, J.P., 2005, Uptake, distribution, and speciation of chromium in brassica juncea, Int. J. Phytoremediation, 7, 153-165. https://doi.org/10.1080/16226510590950441
  21. Cermak, J.H., Stephenson, G.L., Birkholz, D., Wang, Z., and Dixon, D.G., 2010, Toxicity of petroleum hydrocarbon distillates to soil organisms, Environ. Toxicol. Chem, 29(12), 2685-2694. https://doi.org/10.1002/etc.352
  22. Garcia, C., Hernandez, T., and Costa, F., 1997, Potential use of dehydrogenase activity as an index of microbial activity in degraded soils, Commun. Soil Sci. Plant Anal., 28(1&2), 123-134. https://doi.org/10.1080/00103629709369777
  23. Ghodake, G., Seo, Y.D., Park D., and Lee, D.S., 2010, Phytotoxcity of carbon nanotubes assessed by brassica juncea and phaseolus mungo, J. Nanoelectronics and optoelectronics, 5, 157-160. https://doi.org/10.1166/jno.2010.1084
  24. Khan, F.I., Husain, T., and Hejazi R., 2004, An overview and analysis of site remediation technologies, J. Environ. Manage., 71, 95-122. https://doi.org/10.1016/j.jenvman.2004.02.003
  25. Kaur, H., Inderjit, and Kaushic, S., 2005, Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth, Plant Physiol. Biochem., 43, 77-81. https://doi.org/10.1016/j.plaphy.2004.12.007
  26. Lee, M.R., Lee, R.J., Lin, Y.W., Chen, C.M., and Hwang, B.H., 1998, Gas-phase postderivatization following solid-phase microextraction for determining acidic herbicides in water, Anal. Chem., 70, 1963-1968. https://doi.org/10.1021/ac971153g
  27. Luo, C.L., Shen, Z.G., and Li, X.D., 2008, Root exudates increase metal accumulation in mixed cultures: implications for naturally enhanced phytoextraction, Water Air Soil Pollut., 193, 147-154. https://doi.org/10.1007/s11270-008-9678-z
  28. Miyazawa, M., Pavan, M.A., Oliveira, E.L., Ionashiro, M., and Silva, A.K., 2000, Gravimetric determination of soil organic matter, Brazilian Arch. Biol. technol., 43(5), 475-478. https://doi.org/10.1590/S1516-89132000000500005
  29. Mresi, W. and Schinner, F., 1991, An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazilium chloride, Biol. Fertil. Soils., 11, 210-220. https://doi.org/10.1007/BF00335769
  30. Robidoux, P.Y., Hawari, J., Thiboutot, S., Ampleman, G., and Sunahara, G.I., 1999, Acute toxicity of 2,4,6-trinitrotoluene in earthworm(eisenia andrei), Ecotoxicol. Environ. Safety, 44, 311-321. https://doi.org/10.1006/eesa.1999.1839
  31. Robidoux, P.Y., Svendsen, C., Caumartin, J., Hawari, J., Ampleman, G., Thiboutot, S., Weeks, J.M., and Sunahara, G.I., 2000, Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test, Environ. Toxicol. Chem., 19(7), 1764-1773. https://doi.org/10.1002/etc.5620190709
  32. Ross, D.J., 1970, Effects of storage on dehydrogenase activities of soils, Soil Biol. Biochem., 2, 55-61. https://doi.org/10.1016/0038-0717(70)90026-X
  33. Saterbak, A., Toy, R.J., Mcmain, B.J., Williams, M.P., and Dorn, P.B., 2000, Ecotoxicological and analytical assessment of effects of bioremediation on hydrocarbon-containing soil, Environ. Toxicol. Chem., 19(11), 2643-2652. https://doi.org/10.1002/etc.5620191105
  34. Scholz, M., Xu, M., and Jing, K., 2002, Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper. Biore. Technol., 83, 71-79. https://doi.org/10.1016/S0960-8524(01)00210-3
  35. Shakir Hanna, S.H. and Weaver, R.W., 2002, Earthworm survival in oil contaminated soil, Plant Soil, 240, 127-132. https://doi.org/10.1023/A:1015816315477
  36. Shen, G., Lu, Y., Zhou, Q., and Hong, J., 2005, Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme, chemosphere, 61, 1175-1182. https://doi.org/10.1016/j.chemosphere.2005.02.074
  37. Singh, S. and Sinha, S., 2005, Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste, Ecotoxicol. Environ. Safety, 62, 118-127. https://doi.org/10.1016/j.ecoenv.2004.12.026
  38. Statheropoulos, M., Agapiou, A., Spiliopoulou, C., Pallis, G.C., and Sianos, E., 2007, Environmental aspects of VOCs evolved in the early stages of human decomposition, Sci. Total Environ., 385, 221-227 https://doi.org/10.1016/j.scitotenv.2007.07.003
  39. USEPA, 2004, How to evaluate alternative cleanup technologies for underground storage tank sites: A guide for corrective action plan reviewers, Chapter VI: Low-temperature thermal desorption, Soild waste and emergency response 5401G, EPA 510-R-04-002.
  40. USEPA, 2008, Green remediation: Incorporating sustainable environmental practices into remediation of contaminated site, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response, EPA 542-R-08-002.
  41. Wang, Q.Y., Zhou, D.M., Cang, L., and Sun, T.R., 2009, Application of bioassays to evaluate a copper contaminated soil before and after pilot-scale electrokinetic remediation, Environ. Pollut., 157, 410-416. https://doi.org/10.1016/j.envpol.2008.09.036