• Title/Summary/Keyword: EC 농도

Search Result 911, Processing Time 0.02 seconds

Research on the Germination and Growth of Ginseng Seeds According to ICT-Based Soil (ICT 기반의 인삼 공정 육묘 시 상토에 따른 발아 특성)

  • Kim, D.H.;Kim, Y.B.;Koo, H.J.;Baek, H.J.;Lee, S.B.;Hong, E.K.;Kim, S.K.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.51-61
    • /
    • 2021
  • As a result of examining the germination rate between ginseng varieties, Jagyongjong varieties had the highest germination rate, and Yeonpung. had the lowest germination rate. In the ginseng seed germination rate experiment, the highest germination rate and growth condition were shown in artificial soil conditions of the ratio of Peatmoss 6.5: Pearlite 2: Masato 1.5. Good soil conditions require adequate soil moisture forces during the incubation period. The cultivation of ginseng medicinal crops requires optimal soil breathability, soil pH, and soil stabilization, which are important for root breathing. Microbial activity in the soil has a great influence on the growth of ginseng. The optimum pH of the soil for ginseng cultivation is 5.0-5.5 As a result of the experiment, the soil remained in an appropriate range after a month. In general, when the EC concentration value of the soil for ginseng cultivation is 0.2 mS/cm or more, growth deteriorates, and when the EC concentration value is 0.5 mS/cm or more, concentration obstacles such as root decay occur. As a result of the analysis, the higher the concentration value of EC, the more likely it is to interfere with ginseng growth.

Modeling Nutrient Uptake of Cucumber Plant Based on Electric Conductivity and Nutrient Solution Uptake in Closed Perlite Culture (순환식 펄라이트재배에서 전기전도도와 양액흡수량을 이용한 오이 양분 흡수 모델링)

  • Hyung Jin Kim;Young Hoi Woo;Wan Soon Kim;Sam Jeung Cho;Yooun Il Nam
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 2001
  • This study was conducted to develop a nutrient uptake model in cucumnber (Cucumis sativus L. cv. Eunsung Backdadagi) plants for prediction of the amount of nutrients in drainage solution in a closed perlite culture system. Electrical conductivity (EC) of the nutrient solution was adjusted to 1.5, 1.8, 2.1, 2.4, and 2.7 dS. $m^{-1}$ . The amount of nutrient solution absorbed in different EC treatments was not different until the mid stage of growth. However, after the mid growth stage, a high EC treatment resulted in less solution absorption. The absorption rates of K, N $O_3$$^{[-10]}$ -N, Mg, and P increased continuously for a whole growing period in all treatments, while those of Ca decreased slightly. For S, the decrease was significant after th mid stage of growth. although the amounts of absorbed inorganic ions in different EC treatments were not significantly different at the first stage of growth, they were significantly different after the mid stage of growth and decreased slightly at the end of growth stage. Models for predicting the amounts of each inorganic ion absorbed were developed by using EC and the amount of nutrient solution absorbed per unit radiation(mg.M $J^{-1}$), which proved to be practical with a positive correlation at 1 percent probability between the developed model and practical values..

  • PDF

Differential Cytotoxic Effects of Jaspine B in Various Cancer Cells (다양한 암세포주에서 Jaspine B의 함암활성 비교)

  • Lee, Jihoon;Choi, Kwangik;Kwon, Mihwa;Lee, Dongjoo;Choi, Min-Koo;Song, Im-Sook
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1392-1399
    • /
    • 2016
  • Jaspine B is an anhydrophytosphingosine that is isolated from a marine sponge. Because of its structural similarity to sphingosine, it shows anti-cancer effects in human carcinomas. Therefore, this study aims to investigate its anti-proliferative effect on various cancer cells and to correlate its association with the intracellular accumulation of Jaspine B in relevant cancer cells. The anti-proliferative effect of Jaspine B in various cancer cells was determined by a cell viability test, and the intracellular concentration of Jaspine B in relevant cancer cells was determined using mass spectrometry coupled with liquid chromatography. The correlation coefficient and p value between the cytotoxicity and the cell accumulation of Jaspine B were determined using SPSS 16.1. The cytotoxicity of Jaspine B varied depending on the type of cancer cell when compared the $EC_{50}$ values of Jaspine B. Breast and melanoma cancer cells were susceptible to Jaspine B, whereas renal carcinoma cells were resistant. The intracellular concentrations of Jaspine B had a reciprocal correlation with the $EC_{50}$ values in the same cells (r = 0.838). The results suggested that the anti-proliferative effect of Jaspine B was associated with the cellular accumulation of this compound. However, Jaspine B was not a substrate for P-glycoprotein and breast cancer resistance protein, as major efflux pumps caused multidrug resistance. The maintenance of a high intracellular concentration is crucial for the cytotoxic effect of Jaspine B; however, efflux pumps may not be a controlling factor for Jaspine B-related resistance in cancer cells.

Seasonal characteristics of Elemental and Orgainc Carbon (미세입자 ($PM_{2.5}$) 에 포함된 탄소농도계절 특성)

  • 강병욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.103-112
    • /
    • 2000
  • Elemental carbon(EC) and organic carbon(OC) in fine particles (PM2.5) were collected from October 1995 through August 1996 in the Chongju area. The annual mean concentrations of EC and OC were 4.44 and 4.99 $\mu\textrm{g}$/m3 respectively. EC showed seasonal variation (p<0.01) The magnitude of the seasonal mean EC concen-tration progresses in the following manner : fall>winter>spring>summer. However OC was not statistically seasonal difference(p=0.20) The annual average OC/EC ratio was 1.12 suggesting that organic carbon measured may by emitted directly in particulate form(primary aerosol) The contribution of EC to PM2.5 mass follows a general pattern in which fall(14.6%) > winter (9.8%) >spring(7.8%) =summer(7.8%) and the contribution of OC to the PM2.5 mass varies in order fall(13.8%) >winter(11.3%) >spring(10.5%) >summer (9.4%) Total carbona-ceous particles(EC and OC) accounted for 17-28% of the PM2.5 mass.

  • PDF

Effects of Nutrient Solution Strength and Arbuscular Mycorrhizal Fungi on Growth and Flowering of Potted Miniature Rose in Ebb and Flow System (저면관수 시스템에서 배양액 농도와 Arbuscular 균근균 처리가 분식 미니 장미의 생육 및 개화에 미치는 영향)

  • 이범선;이인호;지성희;손보균;조자용;강종구
    • Journal of Bio-Environment Control
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • Objective of this research was to evaluate the effects of nutrient solution strength and Arbuscular Mycorrhizal Fungi (AMF, Glomus sp.) on growth and flowering of potted miniature rose (Rosa hybrids L. cv 'Scarlet'). To achieve this, plants cultured with six different strength of Japanese Horticultural Experiment Station solution (0.125, 0.25, 0.5, 1.0, 2.0, and $4.0\;{\times}\;{full}$ strength) and inoculated with AMP at cutting and transplanting. Leachate EC increased as solution strength were elevated. The leachate EC were not different between non-inoculated plants and AMF treatment at cutting, but significantly decreased when plants were inoculated with AMF at transplanting. The elevated strength of nutrient solution resulted in decrease of leachate pH. When plants were inoculated AMF at transplanting, leachate pH was lower than those of non-inoculated plants and inoculated with AMF at cutting. At harvesting (93 days after transplanting), plant height, leaf width, number of branches and shoot fresh and dry weight of rose 'Scarlet' increased with elevated nutrient solution strength. AMF treatment at transplanting of potted rose 'Scarlet' showed the best results in growth such as chlorophyll content, number of flowers, and shortening the days required to flower. The content of N, P, K, and Mn in leaf tissue of potted rose increased by elevated nutrient solution strength and AMF treatment, while the tissue Na contents decreased by an AMF treatment.

Salt Tolerance Assessment with NaCl of Stauntonia hexaphylla (Thunb.) Decene. and Raphiolepis indica var. umbellata (Thunb.) Ohashi (NaCl 처리에 따른 멀꿀과 다정큼나무의 내염성 평가)

  • Choi, Su Min;Shin, Hyeon Cheol;Kim, Inhea;Huh, Keun Young;Kim, Daeil
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.617-625
    • /
    • 2013
  • Stauntonia hexaphylla and Raphiolepis indica, cold-tolerant broadleaved evergreens ranging through the southern region of South Korea, were assessed on salt tolerance with NaCl treatment using visual damage, chlorophyll florescence image, and malondialdehyde (MDA) analysis. As NaCl concentrations increased, the soil pH decreased and EC increased, and the soil of S. hexaphylla was affected more strongly by the treatment than that of R. indica. In visual damage, S. hexaphylla withered above 200 mM NaCl at 20 days after the treatment. All individuals of R. indica survived during the experiment though the leaves of R. indica showed visual damages up to 400 mM NaCl. The color changes in chlorophyll fluorescence showed a strong correlation with the degree of visual damage. As NaCl increased, the red color of the leaves of S. hexaphylla was distinctly changed to blue and chlorophyll fluorescence decreased starting from the margin to the middle of a leaf. R. indica showed subtle color changes and remained in red color during the experiment. At five days after the NaCl treatment, the MDA of S. hexaphylla was above $4.56nmol{\cdot}g^{-1}$ when plants showed the highest visual damage and EC. The MDA of R. indica in all treatments showed below $1.5nmol{\cdot}g^{-1}$ except 400 mM NaCl treatment during the experiment.

Effects of Different EC in Nutrient Solution on Growth and Quality of Red Mustard and Pak-Choi in Plant Factory (식물공장내 양액의 EC가 적겨자와 청경채의 생육 및 품질에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Jun Gu;Jang, Yoon Ah;Nam, Chun Woo;Yeo, Kyung-Hwan;Lee, Hee Ju;Um, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.322-326
    • /
    • 2012
  • Recently, researches related to plant factory system has been activated and production of Ssam-vegetables using artificial lighting has been increasing. In South Korea, Ssam-vegetables are very popular and the consumption is increasing every year. Because leaf vegetables cultivated under hydroponic systems are more preferable rather than those cultivated by soil culture in Korea, the plant factory system would be more effective in production of Ssam-vegetables. Therefore, this study was carried out in order to analyze the yield and vitamin C contents in red mustard (Brassica juncea L.) and pak-choi (Brassica campestris var. chinensis), which are used a lot for the Ssam-vegetables in South Korea, as influenced by different concentrations of the nutrient solution in a plant factory system. As a results, there was no significant differences in the plant height among the treatment of EC in the nutrient solution, but for red mustard plants, the number of leaves tended to decrease in the treatment with higher EC. Leaf area of pak-choi plants was significantly increased in the higher EC, while the fresh weight had a tendency to increase along with increasing EC in the nutrient solution for both crops. The photosynthetic rates did not show a distinct tendency by EC levels for red mustard plants, but for pak-choi plants, it tended to be higher at the high EC. The contents of ascorbic acid in leaves were higher with decreasing EC concentration in the nutrient solution for red mustard plants, while the content was the highest at EC $2.0dS{\cdot}m^{-1}$ for pak-choi plants. In summary, considering the marketable yields and vitamin C at different nutrient concentrations in a plant factory, the optimal concentration for red mustard and pak-choi plants was thought to be EC $2.0{\sim}2.5dS{\cdot}m^{-1}$.

Effect of VA Mycorrhizal Fungi on Alleviation of Salt Injury in Hot Pepper (Capsicum annuum L.) (VA 균근균(菌根菌) 접종(接種)에 의한 고추의 염류장해(鹽類障害) 경감효과(輕減效果))

  • Sohn, Bo-Kyoon;Huh, Sang-Man;Kim, Kil-Yong;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.482-492
    • /
    • 2000
  • Vesicular arbuscular mycorrhizal (VAM) fungi are known to increase plant growth as well as to enhance salt tolerance of plants where plant roots are colonized by VAM. In pot experiment, pepper was grown in soil containing 0, 200, 400, and $600P\;kg\;ha^{-1}$ with and without mycorrhizal inoculum. Pots were irrigated with saline water containing 0.5, 2.0, and $6.0dS\;m^{-1}$. At 0, 200, and $400P\;kg\;ha^{-1}$ of three EC treatments, plant hight in mycorrhizal treatments was significantly different compared to nonmycorrhizal treatments. However, plant hight at $600P\;kg\;ha^{-1}$ was not different between mycorrhizal and nomycorrhizal treatments. Leaf area at $0P\;kg\;ha^{-1}$ of three EC treatments, and $200P\;kg\;ha^{-1}$ of $6.0dS\;m^{-1}$ in mycorrhizal treatments significantly increased compared to nonmycorrhizal treatments. However, these increase were not discovered in high salinity and P level. Level of EC affected dry weight, and especially, interection of P and EC, or P and VA inoculation highly affected root dry weight. R/S ratio generally decreased in mycorrhizal treatments. Significantly decreased R/S ratio was shown at 0, 400, and $600P\;kg\;ha^{-1}$ of $6.0dS\;m^{-1}$. Chlorophyll content generally increased with decreased salinity and P level where mycorrhizal treatments showed higher chlorophyll content compared to nonmycorrhizal treatments. The benefits of VAM inoculation on fruit production was discovered at only low P level and salinity. Mycorrhizal dependency on dry weight basis was generally shown in $0P\;kg\;ha^{-1}$ of three EC treatments and 0.5, $2.0dS\;m^{-1}$ of $200P\;kg\;ha^{-1}$ level. Colonization rate ranged 3.3 to 43.3% and number of spores was 47.7 to 198.3 $100g^{-1}$ soil. Colonization rate and number of spores increased with decreased P level and salinity where there was high correlation ($r=0.858^{**}$) between both. Also improved uptake of mineral nutrients was discovered at mycorrhizal treatments in decreased P level and salinity.

  • PDF

Estimation of Transverse Dispersion Coefficients Using Experimental and Numerical Method in River (자연하천에서 추적자 실험 및 수치모의를 통한 횡분산 계수 산정)

  • Seo, Il Won;Jung, Sung Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.74-74
    • /
    • 2017
  • 자연하천에서 수자원의 원활하고 안전한 관리에 있어서 오염물의 혼합 거동에 대한 이해는 매우 중요하다. 대부분의 자연하천의 경우 만곡부 및 합류부와 같은 복잡한 지형을 갖고 있으며 이러한 경우 하천의 흐름이 복잡한 형태를 갖게 된다. 특히 수생태계에 많은 영향을 미치는 하폐수 처리장 처리수는 대부분 1차적으로 지류로 방류되어 이후 본류로 지속적으로 유입되게 된다. 이러한 오염물질이 지류로부터 본류로 혼합되는 합류부 구간의 경우 일반적인 1차원 혼합이 아닌 횡방향을 포함하는 2차원적인 혼합 거동에 대한 분석이 필요하다. 본 연구에서는 금호강과 진천천이 좌안으로부터 오염물질이 지속적으로 유입되는 낙동강 중류구간 합류부에서의 혼합 구간의 연구를 위하여 횡분산계수 산정을 위하여 전기전도도(electrical conductivity: EC)를 이용한 농도 추적 실험을 수행하였다. 낙동강 본류에서 정해진 측선을 따라 센서가 설치된 보트를 이용하여 실시간으로 농도, 수리량 데이터를 GPS 위치 데이터와 함께 취득하였다. 또한 실험으로부터 취득한 자료를 바탕으로 2차원 이송-확산 혼합 거동 모델인 CTM-2D 수치모형을 이용하여 모의하였다. 실험 수행 결과, 지류인 금호강과 진천천의 EC 농도가 합류 전 낙동강 본류의 EC 기저농도 보다 더 높은 값을 나타내었다. 지류의 유입으로 인하여 본류 좌안 쪽에서 전기전도도의 값의 상승을 확인할 수 있었으며 하류로 이동할수록 불균등했던 전기전도도의 분포가 횡방향 혼합을 통하여 점점 균등한 분포로 전환되는 것으로 나타났다. 또한 2차원 혼합 거동 분석에 필요한 횡 분산계수 산정을 위해 모멘트법, 해석해를 이용한 추적법, 수치모형을 통한 역산법을 통해 산정하여 결과를 비교하였다. 그 결과 모멘트법의 경우 다른 방법들에 비하여 전반적으로 과소 산정하는 경향을 나타내었다.

  • PDF

The Effect of Meteorological Factors on PM10 Depletion in the Atmosphere and Evaluation of Rainwater Quality (기상인자에 따른 대기 중 미세먼지 감소 및 빗물 특성 연구)

  • Park, Hyemin;Kim, Taeyong;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1733-1741
    • /
    • 2020
  • This study analyzed the effect of meteorological factors on the concentration of PM10 (particulate matter 10) in the atmosphere and the variation of rainwater quality using multivariate statistical analysis. The concentration of PM10 in the atmosphere was continuously measured during eleven precipitation events with a custom-built PM sensor node. A total of 183 rainwater samples were analyzed for pH, EC (electrical conductivity), and water-soluble cations (Na+, Mg2+, K+, Ca2+, NH4+) and anions (Cl-, NO3-, SO42-). The data has been analyzed using two multivariate statistical techniques (principal component analysis, PCA, and Pearson correlation analysis) to identify relationships among PM10 concentrations in the atmosphere, meteorological factors, and rainwater quality factors. When the rainfall intensity was relatively strong (> 5 mm/h, rainfall type 1), the PM10 concentration in the atmosphere showed a negative correlation (r = -0.55, p < 0.05) with cumulative rainfall. The PM10 concentration increased the concentration of water-soluble ions (r = 0.25) and EC (r = 0.4), and decreased the pH (r = -0.7) of rainwater samples. However, for rainfall type 2 (< 5 mm/h), there was no negative correlation between the PM10 concentration in the atmosphere and cumulative rainfall and no statistically significant correlation between the PM10 concentration in the atmosphere and rainwater quality.