DOI QR코드

DOI QR Code

Salt Tolerance Assessment with NaCl of Stauntonia hexaphylla (Thunb.) Decene. and Raphiolepis indica var. umbellata (Thunb.) Ohashi

NaCl 처리에 따른 멀꿀과 다정큼나무의 내염성 평가

  • Choi, Su Min (Southern Forest Resource Research Center, Korea Forest Research Institute) ;
  • Shin, Hyeon Cheol (Southern Forest Resource Research Center, Korea Forest Research Institute) ;
  • Kim, Inhea (Department of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Huh, Keun Young (Department of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Kim, Daeil (Department of Horticultural Science, Chungbuk National University)
  • 최수민 (국립산림과학원 남부산림자원연구소) ;
  • 신현철 (국립산림과학원 남부산림자원연구소) ;
  • 김인혜 (경남과학기술대학교 조경학과) ;
  • 허근영 (경남과학기술대학교 조경학과) ;
  • 김대일 (충북대학교 원예과학과)
  • Received : 2013.03.14
  • Accepted : 2013.04.12
  • Published : 2013.09.30

Abstract

Stauntonia hexaphylla and Raphiolepis indica, cold-tolerant broadleaved evergreens ranging through the southern region of South Korea, were assessed on salt tolerance with NaCl treatment using visual damage, chlorophyll florescence image, and malondialdehyde (MDA) analysis. As NaCl concentrations increased, the soil pH decreased and EC increased, and the soil of S. hexaphylla was affected more strongly by the treatment than that of R. indica. In visual damage, S. hexaphylla withered above 200 mM NaCl at 20 days after the treatment. All individuals of R. indica survived during the experiment though the leaves of R. indica showed visual damages up to 400 mM NaCl. The color changes in chlorophyll fluorescence showed a strong correlation with the degree of visual damage. As NaCl increased, the red color of the leaves of S. hexaphylla was distinctly changed to blue and chlorophyll fluorescence decreased starting from the margin to the middle of a leaf. R. indica showed subtle color changes and remained in red color during the experiment. At five days after the NaCl treatment, the MDA of S. hexaphylla was above $4.56nmol{\cdot}g^{-1}$ when plants showed the highest visual damage and EC. The MDA of R. indica in all treatments showed below $1.5nmol{\cdot}g^{-1}$ except 400 mM NaCl treatment during the experiment.

상록활엽 조경소재 연구개발의 일환으로써, 기후변화에 대응하여 내한성이 우수한 남부지역 상록활엽수 중에서 멀꿀과 다정큼나무에 대하여 가시적 피해, 엽록소 형광이미지, MDA(malondialdehyde) 농도 분석으로 내염성을 평가하였다. NaCl 농도가 증가함에 따라서 토양 pH는 감소하고 EC는 증가하였으며 멀꿀이 생육 중은 토양은 다정큼나무가 생육 중인 토양보다 더 강하게 영향을 받았다. 시각적 피해에서 멀꿀은 처리 후 20일에 200mM NaCl 농도 이상에서 고사하였다. 다정큼나무는 비록 400mM NaCl 농도에서 잎의 피해를 나타냈지만 실험기간 동안 모두 생존하였다. 엽록소 형광이미지에서 색상변화는 시각적 피해 결과와 강한 일관성을 보였다. NaCl 농도가 증가함에 따라서 멀꿀 잎의 적색은 유의성 있게 낮은 형광 값인 청색으로 변화하였고 변화는 가장자리에서 중앙으로 옮겨갔다. 다정큼나무의 형광이미지 반응은 NaCl 처리일이 증가할수록 잎의 가장자리에 변화가 나타났으나 여전히 실험기간 동안 적색을 나타냈다. 가장 높은 시각적 피해와 EC를 보였던 처리 후 5일에 멀꿀의 MDA 농도는 $4.56nmol{\cdot}g^{-1}$였다. 다정큼나무의 MDA 농도는 400mM NaCl 농도 처리구를 제외한 모든 처리구들에서 $1.5nmol{\cdot}g^{-1}$ 이하를 나타냈다.

Keywords

References

  1. Alian, A., A. Altman, and B. Heuer. 2000. Genotype difference in salinity and water stress tolerance of fresh market tomato cultivars. Plant Sci. 152:59-65. https://doi.org/10.1016/S0168-9452(99)00220-4
  2. Bernstein, L. 1975. Effect of salinity and sodicity on plant growth. Amer. Rev. Phytopathol. 13:295-312. https://doi.org/10.1146/annurev.py.13.090175.001455
  3. Bohnert, I.J. and R.G. Jensen. 1996. Metabolic engineering for increased for salt tolerance - the next step. Austal. J. Plant Physiol. 23:661-667. https://doi.org/10.1071/PP9960661
  4. Glynn, C.P., A.F. Gillia, and G. Oxenham, 2003. Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. J. Arboriculture 29:61-65.
  5. Han, S.H. 2011. Weak and strong trees for environmental stress. J. For. Info. Mar. 2011.
  6. Heath, R.L. and L. Pacher. 1968. Photo peroxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  7. Hegedus, A., S. Erdei, and G. Horvath. 2001. Comparative studies of $H_2O_2$ detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci. 160:1085-1093. https://doi.org/10.1016/S0168-9452(01)00330-2
  8. Hurkman, W.J. and C.K. Tanaka. 1987. Effects of salt on the pattern of protein synthesis in barely roots. Plant Physiol. 83:517-524. https://doi.org/10.1104/pp.83.3.517
  9. Ikuta, A. 1989. The triterpenes from Stauntonia hexaphylla call tissues and their biosynthetic significance. J. Nat. Prod. 52:623-628. https://doi.org/10.1021/np50063a024
  10. Kang, D.W. 2010. A study on the growth characteristics of evergreen broadleaf trees according to the change of salinity. Master thesis. Sunchon Natl. Univ., Suncheon, Korea.
  11. Kim, D.G. 2007. Root growth characteristics of Zelkova serrata Makino. after replanting in the reclaimed land from the sea: on the root structure and spatial distribution of fine root phytomass. J. Kor. Inst. Landscape Arch. 35:46-55.
  12. Kim, D.G. 2010a. Native tree species of tolerance to saline soil and salt spray drift at the coastal forests in the west-sea, Korea. Kor. J. Environ. Ecol. 24:209-221.
  13. Kim, D.G. 2010b. Soil salinity and salt spray drift tolerance of native trees on the coastal windbreaks in the south-sea, Korea. Kor. J. Environ. Ecol. 24:14-15.
  14. Kim, J.H. and H.Y. Park. 1998. An effect of coloring and dye stuffs extraction from Rhaphiolepis umbellta. J. Kor. Soc. Craft. 1:113-127.
  15. Koca, H., M. Bor, F. Ozdemir, and I. Turkan. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Expt. Bot. 60:344-351. https://doi.org/10.1016/j.envexpbot.2006.12.005
  16. Ladislay, C., D.G. Gabriele, M. Karel, B. Diana, R. Benedetto, and O. Julie. 2009. Pre-symptomatic detection of Plasmopara visicola infection in grapevine leaves using chlorophyll fluorescence imaging. Eur. J. Plant Pathol. 125:291-302. https://doi.org/10.1007/s10658-009-9482-7
  17. Lee, I.K., G.Y. Lee, C.S. Kim, Y.J. Kang, and E.J. Jeong. 1999. Responses of some evergreen broad-leaved tree species to salt stress. Proc. 99 Mtg. Kor. For. Soc. 1:79-82.
  18. Lichtenthaler, H.K. and J.A. Miehe. 1997. Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci. 2:316-320. https://doi.org/10.1016/S1360-1385(97)89954-2
  19. Lin, C.C. and C.H. Kao. 2000. Effect of NaCl stress on $H_2O_2$ metabolism in rice leaves. Plant Growth Regul. 30:151-155. https://doi.org/10.1023/A:1006345126589
  20. Liu, J., X. Xie, J. Du, J. Sun, and X. Bai. 2008. Effects of simultaneous drought and heat stress on Kentucky bluegrass. Scientia Hort. 115:190-195. https://doi.org/10.1016/j.scienta.2007.08.003
  21. Lu, C.M., N.W. Qiu, Q.T. Lu, B.S. Wang, and T.Y. Kuang. 2002. Does salt stress lead to increased susceptibility of photosystem to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Sci. 163:1063-1068. https://doi.org/10.1016/S0168-9452(02)00281-9
  22. Maggio, A., S. De Pascale, G. Angelino, C. Ruggiero, and G. Barbieri. 2004. Physiological response of tomato to saline irrigation in long-term salinized soils. Eur. J. Agron. 21:149-159. https://doi.org/10.1016/S1161-0301(03)00092-3
  23. Maricle, B.R., R.W. Lee, C.E. Hellquist, O. Kiirats, and G.E. Edwards. 2007. Effects of salinity on chlorophyll fluorescence and $CO_2$ fixation in C4 estuarine grasses. Photosynthetica 45:433-440. https://doi.org/10.1007/s11099-007-0072-7
  24. Misra, N. and A.K. Gupta. 2005. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci. 169:331-339. https://doi.org/10.1016/j.plantsci.2005.02.013
  25. Nedbal, L. and J. Whitmarsh. 2004. Chlorophyll fluorescence imaging of leaves and fruits, p. 389-407. In: C.G. Papageoriou and C.G. Govindjee (eds.). Chlorophyll a fluorescence: A signature photosynthesis. Springer, Dordrecht.
  26. Park, E.J. 2005. Effect of NaCl on the growth and the physiological responses of green papper 'Nokwang' and bell peppar 'Newace'. PhD. Diss., Geongsang Natl. Univ., Jinju, Korea.
  27. Park, W.J. 2008. Effect of NaCl treatment on the growth and the physiological responses of several tree species. PhD. Diss., Chonbuk Natl. Univ., Jeonju, Korea.
  28. Rodriguez, A.B., G. Nogales, J.M. Marchena, E. Ortega, and C. Barriga. 1999. Suppression of both basal and antigen-induced lipid peroxidation in ring dove heterophils by melatonin. Biochem. Pharmacol. 58:1301-1306. https://doi.org/10.1016/S0006-2952(99)00207-5
  29. Scandalios, J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101:7-12.
  30. Sixto, H., J.K. Grau, N. Alba, and R. Alia. 2005. Response to sodium chloride in different species and clones of genus Populus L. For. 78:93-104.
  31. Sung, J.H., S.M. Je, S.H. Kim, and Y.K. Kim. 2010. Effect of calcium chloride ($CaCl_2$) on chlorophyll fluorescence image and photosynthetic apparatus in the leaves of Prunus sargentii. J. Kor. For. Soc. 99:922-928.
  32. Yeo, J.G., J.H. Park, Y.B. Koo, H.C. Kim, and H.N. Kim. 2010. Effects of NaCl concentration on the growth of native willow species collected in a coastal reclaimed land. Kor. J. Soil Sci. Fert. 43:124-131.

Cited by

  1. Effects of NaCl on Growth and Physiological Characteristics of Synurus deltoides(Aiton) Nakai vol.52, pp.2, 2018, https://doi.org/10.14397/jals.2018.52.2.55
  2. NaCl 처리가 고들빼기의 생장과 생리적 특성에 미치는 영향 vol.28, pp.1, 2013, https://doi.org/10.7783/kjmcs.2020.28.1.1