• 제목/요약/키워드: EBPR

검색결과 31건 처리시간 0.022초

생물학적 질소.인 동시제거 시스템에서 탈질미생물의 인 제거 가능성 (Possibility of Anoxic Phosphorus Removal by Denitrifier in Denitrifying EBPR System)

  • 이한샘;윤주환
    • 한국물환경학회지
    • /
    • 제29권6호
    • /
    • pp.782-789
    • /
    • 2013
  • Enhanced biological phosphorus removal (EBPR) behavior and microbial characteristics in the anaerobic-aerobic SBR (PAO SBR) and the anaerobic-anoxic SBR (DPAO SBR) were examined in this research. For 392 days of operation, both SBRs have exhibited a good EBPR (or denitrifying EBPR) performance. $P_{release}/P_{influent}$ ratio was highest in both reactors after the stabilization, while the efficiency of phosphorus removal was decreased since the sludge granulation has been visually observed within the reactor. The comparative analysis of Pyrosequencing-based microbial population between PAO and DPAO sludges showed indirectly that Dechloromonas spp. could utilize $O_2$ and $NO_3{^-}-N$ as an electron acceptor and Accumulibacter phosphatis use only $O_2$ in EBPR system. Also, we concluded that Thauera spp. as a denitrifier contribute significantly to the anoxic phosphorus removal in the DPAO system.

연속회분식 반응기에서 생물학적 인 제거에 대한 pH의 영향

  • 전체옥;박종문
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.105-108
    • /
    • 2000
  • Enhanced biological phosphorus removal (EBPR) is not always successfully achieved by anaerobic/aerobic operation. It has been reported that the EBPR deterioration was caused by the outgrowth of glycogen-accumulating organisms (GAO) over polyphosphate-accumulating organisms (PAO). It was found that pHcould be a tool which might induce the success of EBPR in a sequencing batch reactor (SBR) supplied with acetate. When the pH of anaerobic phase was controlled at 7.0, the operation resulted in failure of EBPR. However, when the pH of anaerobic phase increased up to 8.4, complete EBPR was achieved. We explained the mechanism of pH effect on the competition between GAO and PAO with experimental results and previously proposed biochemical models.

  • PDF

SBR과 SBBR에서 유입 인 농도 감소에 따른 인과 질소의 제거 특성 변화 (Variation of Phosphorus and Nitrogen Removal Characteristics According to the Decrease of Influent Phosphorus Concentration in SBR and SBBR)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제19권4호
    • /
    • pp.483-490
    • /
    • 2010
  • The purpose of this study is to investigate the effect of influent phosphorus concentration on the nitrogen and phosphorus removal in sequencing batch reactor(SBR) and sequencing batch biofilm reactors(SBBRs) in order to recover the enhanced biological phosphorus removal (EBPR) capacity at the sludge of the deterioration of EBPR capacity. In SBBRs, comparing to SBR, the organic removal was occurred actively at the 1 st non-aeration period because of the active phosphorus release at this period. However, the variation of TOC removal according to the decrease of influent phosphorus concentration was not clearly shown both in SBR and SBBRs. In case of SBR losing EBPR capacity, the EBPR capacity was not recovered by the decrease of the influent phosphorus concentration from 7.5 mg/L to 0.9 mg/L. The nitrogen removal increased by the decrease of influent phosphorus concentration both in SBR and SBBRs.

Verification of Enhanced Phosphate Removal Capability in Pure Cultures of Acinetobacter calcoaceticus under Anaerobic/Aerobic Conditions in an SBR

  • Kim, Hyung-Jin;Krishna R. Pagilla
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권6호
    • /
    • pp.335-339
    • /
    • 2002
  • Laboratory experiments were conducted using pure cultures of Acinetobacter under an-aerobic/aerobic cyclic conditions to explain the release and uptake of soluble phosphate in an activated sludge process showing enhanced biological phosphate removal (EBPR). Under anaerobic/aerobic cyclic conditions in a Sequencing Batch Reactor (SBR), COD uptake concurrent with soluble phosphate release by Acinetobacter was not significant during the anaerobic periods, indicating that EBPR would not be established in pure cultures. However Acinetobacter cells accumulated higher phosphate content (5.2%) in SBR than that obtained (4.3%) from batch experiments. These results suggest that Acinetobacter sp. may not follow the proposed pattern of behavior of poly-P bacteria in EBPR activated sludge Plants.

Isolation, Physiological Characterization of Bacteriophages from Enhanced Biological Phosphorus Removal Activated Sludge and Their Putative Role

  • Lee, Sang-Hyon;Satoh, Hiroyasu;Katayama, Hiroyuki;Mino, Takashi
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.730-736
    • /
    • 2004
  • This study aims at characterizing the bacteriophages isolated from activated sludge performing enhanced biological phosphorous removal (EBPR) to understand the interactions between the phage-host system and bacterial community. Sixteen bacterial isolates (E1-E16) were isolated as host bacterial strains from EBPR activated sludge for phage isolation. Forty bacteriophages based on their plaque sizes (2 plaques on E4, 4 on E8, 11 on E10, 5 on E14, 18 on E16) were obtained from filtered supernatant of the EBPR activated sludge. Each bacteriophage did not make any plaque on bacterial strains tested in this study except on its own host bacterial strain, respectively, indicating that the bacteriophages are with narrow host specificity. However, fourteen of the forty bacteriophages obtained in this study lost their virulent ability even on their own host bacteria. All of the lytic phages showed similar one-step growth patterns and had long latent period (about 9 hours) to reproduce their phage particles in their host bacterial cells. On the other hand, their probable burst sizes (6 to 48 per host cell) were large enough to actively lyse their host bacterial cells. Therefore, it could be implied that bacteriophages are also important members of the microbial community in EBPR activated sludge, and lytic phages directly decrease the population size of their host bacterial groups in EBPR activated sludge by lysis.

Fine-Scale Population Structure of Accumulibacter phosphatis in Enhanced Biological Phosphorus Removal Sludge

  • Wang, Qian;Shao, Yongqi;Huong, Vu Thi Thu;Park, Woo-Jun;Park, Jong-Moon;Jeon, Che-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1290-1297
    • /
    • 2008
  • To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting $G_{1PAO},\;G_{2PAO},\;and\;G_{3PAO}$ groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non-Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (GINPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the $G_{4PAO}$ group of Accumulibacter phosphatis, which suggests that GINPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.

유입 COD(HAc)농도에 따른 DPAOs와 GAOs의 거동

  • 김홍태;김경호;오상화;신석우;이영도
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2004년도 가을 학술발표회지 제13권(제2호)
    • /
    • pp.90-91
    • /
    • 2004
  • 한 시스템 내에 GAOs와 PAOs의 공존은 몇몇의 kinetic과 화학양론적 함축을 가지고 있다. 이는 유기물질 획득율의 측면에서 PAOs가 혐기성 단계에서 GAOs보다 kinetic적으로 유리하다고 제안되고 혐기조건에서 GAOs와 PAOs는 이용 가능한 기질에 대해 경쟁한다. PAOs에 있는 저장과는 달리, GAOs에서 glycogen의 생성은 과잉 인을 요구하지 않는다. 그러므로 GAOs는 성장에 필요한 이상의 인을 섭취하지 않는다. 결과적으로 EBPR 시스템의 방해요인이 될 수 있다. 이용 가능한 기질의 농도는 PAOs와 GAOs의 경쟁구도에 상당한 영향을 미치는 이는 전체 EBPR 시스템 내에서 인 제거 효율에 영향을 미칠 수 있다.

  • PDF

생물학적 회분식 인 제거 공정에서 pH 영향과 미생물 군집의 변화 (Influence of Different Operational pH Conditions to Microbial Community in Biological Sequencing Batch Phosphorus Removal Process)

  • 안조환
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.459-465
    • /
    • 2013
  • A sequencing batch reactor was operated under different pH conditions to see the influence of pH to microbial community in enhanced biological phosphorus removal (EBPR) systems. Long term influences of different steady-state pH conditions on the microbial community composition were evaluated by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). The shift in populations from polyphosphate-accumulating organisms (PAOs) to Alphaproteobacteria was observed when pH was changed from 7.5 to 7.0. Alphaproteobacteria with the typical morphological traits of tetrad-forming organisms (TFOs) eventually became dominant members. The alphaproteobacterial TFOs were the phenotype expected for glycogen-accumulating organisms (GAOs), which accumulate large amount of glycogen into the cell. The results strongly suggested that low operational pH condition encourages the appearance of the GAOs in EBPR process, significantly reducing the EBPR capacity.

Microbial Communities of Activated Sludge Performing Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose

  • Jeon, Che-Ok;Seung, Han-Woo;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.385-393
    • /
    • 2003
  • Microbial communities were analyzed in an anaerobic/aerobic sequencing batch reactor (SBR) fed with glucose as a sole carbon source. Scanning electron microscopy (SEM) showed that tetrad or cuboidal packet bacteria dominated the microbial sludge. Quinone, slot hybridization, and 165 rRNA gene sequencing analyses showed that the Proteobacteria beta subclass and the Actinobacteria group were the main microbial species in the SBR sludge. However, according to transmission electron microscopy (TEM), the packet bacteria did not contain polyphosphate granules or glycogen inclusions, but only separate coccus-shaped bacteria contained these, suggesting that coccus-shaped bacteria accumulated polyphosphate directly and the packet bacteria played other role in the enhanced biological phosphorus removal (EBPR). Based on previous reports, the Actinobacteria group and the Proteobacteria beta subclass were very likely responsible for acid formation and polyphosphate accumulation, respectively, and their cooperation achieved the EBPR in the SBR operation which was supplied with glucose.

Slot Hybridization을 이용한 연속 회분식 반응기내 미생물 분포 조사 (Microbial Communities of Activated Sludge in an Anaerobic/Aerobic Sequencing Batch Reactor using Slot Hybridization)

  • 전체옥;신금주;이대성;서판길;박종문
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.939-947
    • /
    • 2000
  • 연속 회분식 반응기를 이용하여 생물학적 인 제거에 관한 미생물 분포 연구를 수행하였다. 탄소원으로 초산을 넣은 합성 폐수를 사용하였고 미생물 체류 시간과 수리학적 체류 시간은 각각 10일과 16시간으로 유지하였다. 인 방출과 흡수가 운전 시간이 경과됨에 따라 점점 빠르게 일어났으며 약 200일 경과 후 안정적인 인 제거가 유지되었다. 안정적인 생물학적 인 제거가 유지될 때의 미생물 분포를 조사하기 위하여 17개의 ribosomal RNA (rRNA) signature probe를 합성하여 슬러지로부터 분리한 전체 rRNA에 대하여 slot hybridization을 실시하였다. 분리한 전체 RNA에는 proteobacteria의 베타군 (beta subclass)에 속하는 rRNA가 가장 많이 함유되어 있음을 확인하였고 CTE probe와 관계된 rRNA가 다음으로 많이 분포하였다. 전통적으로 생물학적 인 제거를 담당하는 미생물로 여겨져 왔던 Acinetobacter, Aeromonas, Pseudomonas의 rRNA는 10% 미만으로 존재하고 있음이 확인되었다. 이러한 결과로부터 Rhodocyclus 그룹같은 proteobacteria의 베타군과 CTE에 속하는 미생물이 인 제거에 중요한 역할을 수행할 것으로 생각되었고 Acinetobacter, Aeromonas, Pseudomonas 등은 생물학적 인 제거에 있어서 과평가된 것으로 판단되었다.

  • PDF