• Title/Summary/Keyword: E3 protein

Search Result 2,939, Processing Time 0.029 seconds

Characterization of Monoclonal Antibody Specific for Hepatitis C Virus E2 Envelope Protein (Hepatitis C Virus E2 외피항원에 대한 단일클론항체의 특성 연구)

  • Park, Joon-Sang;Lee, Bum-Young;Chung, Soo-Il;Min, Mi-Kyung
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 1997
  • Hepatitis C virus (HCV) E2 protein is known to be one of putative envelope proteins. To develop a sensitive detection method for HCV infected tissues and cells, monoclonal antibodys (MAbs) to the E2 protein of HCV were prepared from mice immunized with recombinant baculovirus-expressing E2 protein (Bac-E2). Several hybridoma clones secreting various levels of MAb were isolated and isotypes of these MAb were determined. One clone (L.2.3.3) was used for ascites production and the E2-MAb was purified and characterized. The L.2.3.3 reacted well with both Bac-E2 and E. coli expressed glutathione-S-transferase-E2 (GST-E2) fusion proteins. Using HCV patient sera, E2 envelope protein was found to be localized in the cell membrane boundary both in CHO cells and insect cells which express HCV E2 protein. Similar result was obtained when same cells were treated with the MAb L.2.3.3. These results demonstrated that Bac-E2 protein is capable of eliciting high titer antibody production in mice.

  • PDF

Hepatitis C Virus Core Protein Activates p53 to Inhibit E6-associated Protein Expression via Promoter Hypermethylation (C형 간염바이러스 코어 단백질에 의한 p53 활성화와 프로모터 과메틸화를 통한 E6AP 발현 억제)

  • Kwak, Juri;Jang, Kyung Lib
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1007-1015
    • /
    • 2018
  • The E6-associated protein (E6AP) is known to induce the ubiquitination and proteasomal degradation of HCV core protein and thereby directly impair capsid assembly, resulting in a decline in HCV replication. To counteract this anti-viral host defense system, HCV core protein has evolved a strategy to inhibit E6AP expression via DNA methylation. In the present study, we further explored the mechanism by which HCV core protein inhibits E6AP expression. HCV core protein upregulated both the protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b to inhibit E6AP expression via promoter hypermethylation in HepG2 cells but not in Hep3B cells, which do not express p53. Interestingly, p53 overexpression alone in Hep3B cells was sufficient to activate DNMTs in the absence of HCV core protein and thereby inhibit E6AP expression via promoter hypermethylation. In addition, upregulation of p53 was absolutely required for the HCV core protein to inhibit E6AP expression via promoter hypermethylation, as evidenced by both p53 knockdown and ectopic expression experiments. Accordingly, levels of the ubiquitinated forms of HCV core protein were lower in HepG2 cells than in Hep3B cells. Based on these observations, we conclude that HCV core protein evades ubiquitin-dependent proteasomal degradation in a p53-dependent manner.

Translation Initiation Factor 4E (eIF4E) is Regulated by Cell Death Inhibitor, Diap1

  • Lee, Sun Kyung;Lee, Ji Sun;Shin, Ki Soon;Yoo, Soon Ji
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.445-451
    • /
    • 2007
  • Translation initiation factor 4E (eIF4E) is a key regulator of protein synthesis. Abnormal regulation of eIF4E is closely linked to oncogenic transformation. Several regulatory mechanisms affecting eIF4E are discussed, including transcriptional regulation, phosphorylation and binding of an inhibitor protein. However it is not clear how the level of eIF4E protein is regulated under basal conditions. Here we demonstrate that Diap1 (Drosophila Inhibitor of Apoptosis Protein), a cell death inhibitor, binds directly to eIF4E and poly-ubiquitinates it via its E3 ligase activity, promoting its proteasome-dependent degradation. Expression of Diap1 caused a reduction of Cyclin D1 protein level and inhibited the growth stimulation induced by overexpression of eIF4E. Taken together, our results suggest that the level of eIF4E protein is regulated by Diap1, and that IAPs may play a role in cap-dependent translation by regulating the level of eIF4E protein.

Genetic Mapping and Sequence Analysis of the Gene Encoding the Major Capsid Protein of Bacteriophage E3 (박테리오파지 E3의 Major Capsid Protein을 만드는 유전자의 Mapping 및 염기서열 분석)

  • Bae, Soo-Jin;Myung, Hee-Joon
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.266-269
    • /
    • 1999
  • Bacteriophage E3 grows very rapidly and forms a large size plaque with a diameter of 1 cm. The promoter controlling the expression of the gene encoding the major capsid protein is thought to be most efficient. To find out this promoter, this gene was mapped in the genome according to the following procedure. The major capsid protein was purified from phage particle and the N-terminal amino acid sequence was revealed. Based on this sequence,a degernerate oligonucleotide probe was designed and used for screening of the genomic DNA fragments. From the DNA sequence of the selected clone, the gene encoding the major capsid protein was mapped at 70% of E3 genome. The expression of this gene was not sensitive to rifampicin which indicated the presence of E3's own RNA polymerase.

  • PDF

Molecular Cloning and Expression of Human Dihydrolipoamide Dehydrogenase-Binding Protein in Excherichia coli

  • Lee, Jeong-Min;Ryou, Chong-Suk;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.592-597
    • /
    • 2001
  • The pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and H+. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase(E1), dihydrolipoamide acetyltransferase(E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, cloning and characterization of a gene for human E3BP have been carried out. A cDNA encoding the human E3BP was isolated by database search and cDNA library screening. The primary structure of E3BP has some similar characteristics with that of E2 in the lipoyl domain and the carboxyl-terminal domain, based on the nucleotide sequence and the deduced amino acid sequence. However, the conserved amino acid moiety including the histidine residue for acetyltransferase activity in E2 is not conserved in the case of human E3BP. The human E3BP was expressed and purified in E. coli. The molecular weight of the protein, excluding the mitochondrial target sequence, was about 50 kDa as determined by SDS-PAGE. Cloning of human E3BP and expression of the recombinant E3BP will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

  • PDF

The Effect of Serum Cholesterol Levels of Experimntal Rats fed by Vit. E, Garlic and different the Levels of Proteins in their Diet (백서(白鼠)에 있어서 식이배합(食餌配合)이 혈액내(血液內) Cholesterol에 미치는 영향)

  • Kim, E-Sik
    • Journal of Nutrition and Health
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 1974
  • Biochemical studies such as growth rate, blood cholesterol and ascorbic acid contents in various organs of albino male rats were studied in the Garlic, Vitamin E, high and low protein diet fed groups. The results of this study were summarized as follows : 1) Either single 10% or 30% protein diet fed rats were not shown growth rate properly. In supplementation of Vitamin E or Garlic on 30% protein growth rate was a more increased than that of the 10% protein diet group. 2) The rate of food consumption of rats fed a 10% or 30% protein diet supplemented with Vitamin E and Garlic was more increased than that of the control Group receving 10% or 30% protein diet alone. 3) No essential difference was observed between the cholesterol level in blood of rats fed 10% protein diet supplemented with Vitamin E and Garlic and that of rats Receiving 10% protein diet alone. But the cholesterol level in blood of rats fed 30% protein diet supplemented with Vitamin E and Garlic was lower than that of control receiving 30% protein diet alone. 4) The Vitamin C contents in various organs of rats fed the diet supplemented with Vitamin E and Garlic seems to be a little higher than that of the control group fed the protein diet alone.

  • PDF

Gene Cloning and Nucleotide Sequence of Human Dihydrolipoamide Dehydrogenase-Binding Protein

  • Lee, Jeongmin;Ryou, Chongsuk;Jeon, Bong Kyun;Lee, Poongyeon;Woo, Hee-Jong;Kwon, Moosik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.421-426
    • /
    • 2002
  • The pyruvate dehydrogenase complex (PDC), a member of $\alpha$-keto acid dehydrogenase complex, catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and $H^+$. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, we have partially cloned the gene for E3BP in human. Nine putative clones were isolated by human genomic library screening with 1.35 kb fragment of E3BP cDNA as a probe. For investigation of cloned genes, Southern blot analysis and the construction of the restriction map were performed. One of the isolated clones, E3BP741, has a 3 kb-SacI fragment, which contains 200 bp region matched with E3BP cDNA sequences. The matched DNA sequence encodes the carboxyl-terminal portion of lipoyl-bearing domain and hinge region of human E3BP. Differences between yeast E3BP and mammalian E3BP coupled with the remarkable similarity between mammalian E2 and mammalian E3BP were confirmed from the comparison of the nucleotide sequence and the deduced amino acid sequence in the cloned E3BP. Cloning of human E3BP gene and analysis of the gene structure will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

Unique Cartilage Matrix-Associated Protein Alleviates Hyperglycemic Stress in MC3T3-E1 Osteoblasts (Unique cartilage matrix-associated proteins에 의한 MC3T3-E1 조골세포에서의 고혈당 스트레스 완화 효과)

  • Hyeon Yeong Ju;Na Rae Park;Jung-Eun Kim
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.851-858
    • /
    • 2023
  • Unique cartilage matrix-associated protein (UCMA) is an extrahepatic vitamin K-dependent protein rich in γ-carboxylated (Gla) residues. UCMA has been recognized for its ability to promote osteoblast differentiation and enhance bone formation; however, its impact on osteoblasts under hyperglycemic stress remains unknown. In this paper, we investigated the effect of UCMA on MC3T3-E1 osteoblastic cells under hyperglycemic conditions. After exposure to high glucose, the MC3T3-E1 cells were treated with recombinant UCMA proteins. CellROX and MitoSOX staining showed that the production of reactive oxygen species (ROS), which initially increased under high-glucose conditions in MC3T3-E1 cells, decreased after UCMA treatment. Additionally, quantitative polymerase chain reaction revealed increased expression of antioxidant genes, nuclear factor erythroid 2-related factor 2 and superoxide dismutase 1, in the MC3T3-E1 cells exposed to both high glucose and UCMA. UCMA treatment downregulated the expression of heme oxygenase-1, which reduced its translocation from the cytosol to the nucleus. Moreover, the expression of dynamin-related protein 1, a mitochondrial fission marker, was upregulated, and AKT signaling was inhibited after UCMA treatment. Overall, UCMA appears to mitigate ROS production, increase antioxidant gene expression, impact mitochondrial dynamics, and modulate AKT signaling in osteoblasts exposed to high-glucose conditions. This study advances our understanding of the cellular mechanism of UCMA and suggests its potential use as a novel therapeutic agent for bone complications related to metabolic disorders.

Partial Purification of Protein X from the Pyruvate Dehydrogenase Complex of Bovine Kidney

  • ;;;;Richard L. Veech
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.260-260
    • /
    • 1994
  • Mammalian pyruvate dehydrogenase complex(PDC) enzyme consists of multiple oopies of three major oligomeric enzymes-El, E2 E3. And protein X is one of the enzymatic constituents which is tightly bound to E2 subunit This complex enzyme is responsible for the oxidative decarboxylation of pyruvate producing of acetyl CoA which is a key intermediate for the entry of carbohydrates into the TCA cycle for its complete metabolic conversion to CO$_2$. And the overall activity of the complex enzyme is regulated via covalent nodification of El subunit by a El specific phosphatase ad kinase. Protein X has lipoyl moiety that undergoes reduction and acetylation during ezymatic reaction and has been known h be involved in the binding of E3 subunit to E2 core and in the regulatory activity of kinase. The purification of protein X has not been achieved majorly because of its tight binding to E2 subunit The E2-protein X subcomplex was obtained by the established methods and the detachment of protein X from E2 was accomplished in the 0.1M borate buffer containing 150mM NaCl. During the storage of the subcomplex in frozen state at -70$^{\circ}C$, the E2 subunit was precipitated and the dissociated protein X was obtained by cntrifegation into the supernatant The verification of protein X was accomplished by (1)the migration on SDS-PAGE, (2)acetylation by 〔2$\^$-l4/C〕 pyruvate, and (3)internal amino acid sequence analysis of tryptic digested enzyme.

  • PDF

Inhibitory Activity of Sparassis latifolia on the Lipid Accumulation through Suppressing Adipogenesis and Activating Lipolysis in 3T3-L1 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Rhim Ryoo;Youngki Park;Kyoung Tae Lee;Jin Boo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.10
    • /
    • pp.2070-2078
    • /
    • 2024
  • Sparassis latifolia (SL) has been reported to exhibit anti-obesity effects in high-fat diet animal models, yet research into its mechanisms of action remains limited. Therefore, this study aimed to elucidate the mechanisms behind the anti-obesity activity of SL's 30% ethanol extract (SL30E) using 3T3-L1 cells in an in vitro setting. SL30E effectively mitigated the accumulation of lipid droplets and triacylglycerol. SL30E downregulated PPARγ and CEBPα protein levels. The diminishment of PPARγ and C/EBPα, facilitated by SL30E, was impeded by the knockdown of β-catenin using β-catenin-specific siRNA. Furthermore, SL30E was observed to increase the protein levels of ATGL and p-HSL, while it concurrently decreased the protein levels of perilipin-1. SL30E downregulated p62/SQSTM1 protein level and upregulated LC3-II protein level. Moreover, SL30E was demonstrated to elevate the protein levels of p-AMPK and PGC-1α. The results indicate that SL30E inhibits lipid accumulation by suppressing adipogenesis and inducing lipolysis, lipophagy, and thermogenesis in 3T3-L1 cells. These observations provide potential insights into the mechanisms underlying the anti-obesity effects of SL, contributing valuable information to the existing body of knowledge.