Translation Initiation Factor 4E (eIF4E) is Regulated by Cell Death Inhibitor, Diap1

  • Lee, Sun Kyung (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University) ;
  • Lee, Ji Sun (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University) ;
  • Shin, Ki Soon (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University) ;
  • Yoo, Soon Ji (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University)
  • Received : 2007.10.24
  • Accepted : 2007.10.30
  • Published : 2007.12.31

Abstract

Translation initiation factor 4E (eIF4E) is a key regulator of protein synthesis. Abnormal regulation of eIF4E is closely linked to oncogenic transformation. Several regulatory mechanisms affecting eIF4E are discussed, including transcriptional regulation, phosphorylation and binding of an inhibitor protein. However it is not clear how the level of eIF4E protein is regulated under basal conditions. Here we demonstrate that Diap1 (Drosophila Inhibitor of Apoptosis Protein), a cell death inhibitor, binds directly to eIF4E and poly-ubiquitinates it via its E3 ligase activity, promoting its proteasome-dependent degradation. Expression of Diap1 caused a reduction of Cyclin D1 protein level and inhibited the growth stimulation induced by overexpression of eIF4E. Taken together, our results suggest that the level of eIF4E protein is regulated by Diap1, and that IAPs may play a role in cap-dependent translation by regulating the level of eIF4E protein.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Korea Science and Engineering Foundation (KOSEF)

References

  1. Averous, J. and Proud, C. G. (2006) When translation meets transformation: the mTOR story. Oncogene 25, 6423−6435
  2. Bilanges, B. and Stokoe, D. (2007) Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 26, 5973−5990
  3. Birkey Reffey, S., Wurthner, J. U., Parks, W. T., Roberts, A. B., and Duckett, C. S. (2001) X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor- $\beta$ signaling. J. Biol. Chem. 276, 26542−26549
  4. Burstein, E., Ganesh, L., Dick, R. D., Sluis, B., Wilkinson, J. C., et al. (2004) A novel role for XIAP in copper homeostasis through regulation of MURR1. EMBO J. 23, 244−254
  5. Ciechanover, A., Finley, D., and Varshavsky, A. (1984) The ubiquitin-mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation. J. Cell Biochem. 24, 27−53
  6. Chai, J., Shiozaki, E., Srinivasula, S. M., Wu, Q., Datta, P., et al. (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769−780
  7. Cohen, N., Sharma, M., Kentsis, A., Perez, J. M., Strudwick, S., et al. (2001) PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 20, 4547-4559 https://doi.org/10.1093/emboj/20.16.4547
  8. Culjkovic, B., Topisirovic, I., Skrabanek, L., Ruiz-Gutierrez, M., and Borden, K. L. (2005) eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR. J. Cell Biol. 169, 245−256
  9. De Benedetti, A. and Graff, J. R. (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23, 3189− 3199
  10. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33−42
  11. Fukunaga, R. and Hunter, T. (1997) MNK1, a new MAP kinaseactivated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16, 1921−1933
  12. Gingras, A. C., Raught, B., Gygi, S. P., Niedzwiecka, A., Miron, M., et al. (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 15, 2852−2864
  13. Graff, J. R. and Zimmer, S. G. (2003) Translational control and metastatic progression: enhanced activity of the mRNA capbinding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin. Exp. Metastasis 20, 265− 273
  14. Graumann, J., Dunipace, L. A., Seol, J. H., McDonald, W. H., Yates, J. R., et al. (2004) Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol. Cell Proteomics 3, 226−237
  15. Hay, B. A., Wassarman, D. A., and Rubin, G. M. (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253−1262
  16. Huang, Y., Park, Y. C., Rich, R. L., Segal, D., Myszka, D. G., et al. (2001) Structural basis of caspase inhibition by XIAP; differential roles of the linker versus the BIR domain. Cell 104, 781−790
  17. Huh, J. R., Foe, I., Chen, C. H., Yoo, S. J., Guo, M., et al. (2007) The Drosophila inhibitor of Apoptosis (IAP) Diap2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the Reaper/Hid/Grim family of IAPbinding apoptosis inducers. J. Biol. Chem. 282, 2056−2068
  18. Marcotrigiano, J., Gingras, A., Sonenberg, N., and Burley, S. K. (1997) Cocrystal structure of the messenger RNA 5′ Capbinding protein (eIF4E) bound to 7-methyl-GDP. Cell 89, 951−961
  19. McClusky, D. R. (2005) A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in nodepositive breast cancer. Ann. Surg. 242, 584−592
  20. Murata, T. and Shimotohno, K. (2006) Ubiquitination and proteasome- dependent degradation of human eukaryotic translation initiation factor 4E. J. Biol. Chem. 281, 20788−20800
  21. Olson, M. R., Holley, C. L., Yoo, S. J., Huh, J. R., and Hay, B. A. (2003) Reaper is regulated by IAP-mediated ubiquitination. J. Biol. Chem. 278, 4028−4034
  22. Othumpangat, S., Kashon, M., and Joseph, P. (2005a) Eukaryotic translation initiation factor 4E is a cellular target for toxicity and death due to exposure to cadmium chloride. J. Biol. Chem. 280, 25162−25169 https://doi.org/10.1074/jbc.M406249200
  23. Othumpangat, S., Kashon, M., and Joseph, P. (2005b) Sodium arsenite-induced inhibition of eukaryotic translation initiation factor 4E (eIF4E) results in cytotoxicity and cell death. Mol. Cell. Biochem. 279, 123−131
  24. Rosenwald, I. B., Kaspar, R., Rousseau, D., Gehrke, L., Leboulch, P., et al. (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem. 270, 21176− 21180
  25. Sanna, M. G., Da Silva Correia, J., Ducrey, O., Lee, J., Nomoto, K., et al. (2002) IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol. Cell. Biol. 22, 1754−1766
  26. Schmidt, E. V. (2004) The role of c-myc in regulation of translation initiation. Oncogene 23, 3217−3221
  27. Shi, Y. (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459−470
  28. Topisirovic, I., Culjkovic, B., Cohen, N., Perez, J. M., Skrabanek, L., et al. (2003) The praline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth. EMBO J. 22, 689−703
  29. Topisirovic, I., Ruiz-Gutierrez, M., and Borden, K. L. (2004) Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res. 64, 8639−8642
  30. Vaux, D. L. and Silke, J. (2005) IAPs, RINGs and ubiquitylation. Nat. Rev. Mol. Cell. Biol. 6, 287−297 https://doi.org/10.1038/nrn1646
  31. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 42−53
  32. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A., and Hay, B. A. (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453−463
  33. Wang, X., Beugnet, A., Murakami, M., Yamanaka, S., and Proud, C. G. (2005) Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol. Cell. Biol. 25, 2558−2572
  34. Waskiewicz, A. J., Flynn, A., Proud, C. G., and Cooper, J. A. (1997) Mitogen-activated protein kinases activate the serine/ threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909−1920
  35. Yan, N., Wu, J., Chai, J., Li, W., and Shi, Y. (2004) Molecular mechanisms of DrICE inhibition by Diap1 and removal of inhibition by Reaper, Hid and Grim. Nat. Struct. Mol. Biol. 11, 420−428 https://doi.org/10.1038/ng1295-428
  36. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M., and Ashwell, J. D. (2000) Ubiquitination protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874−877 https://doi.org/10.1126/science.288.5467.877
  37. Yoo, S. J., Huh, J. R., Muro, I., Yu, H., and Wang, S. L. (2002) Hid, Reaper and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat. Cell Biol. 4, 414−424