DOI QR코드

DOI QR Code

Inhibitory Activity of Sparassis latifolia on the Lipid Accumulation through Suppressing Adipogenesis and Activating Lipolysis in 3T3-L1 Cells

  • Jeong Won Choi (Department of Forest Science, Andong National University) ;
  • Hyeok Jin Choi (Department of Forest Science, Andong National University) ;
  • Rhim Ryoo (Department of Forest Bioresources, Division of Forest Microbiology, National Institute of Forest Science) ;
  • Youngki Park (Department of Forest Bioresources, Division of Forest Microbiology, National Institute of Forest Science) ;
  • Kyoung Tae Lee (Department of Forest Bioresources, Division of Forest Microbiology, National Institute of Forest Science) ;
  • Jin Boo Jeong (Department of Forest Science, Andong National University)
  • Received : 2024.04.23
  • Accepted : 2024.07.22
  • Published : 2024.10.28

Abstract

Sparassis latifolia (SL) has been reported to exhibit anti-obesity effects in high-fat diet animal models, yet research into its mechanisms of action remains limited. Therefore, this study aimed to elucidate the mechanisms behind the anti-obesity activity of SL's 30% ethanol extract (SL30E) using 3T3-L1 cells in an in vitro setting. SL30E effectively mitigated the accumulation of lipid droplets and triacylglycerol. SL30E downregulated PPARγ and CEBPα protein levels. The diminishment of PPARγ and C/EBPα, facilitated by SL30E, was impeded by the knockdown of β-catenin using β-catenin-specific siRNA. Furthermore, SL30E was observed to increase the protein levels of ATGL and p-HSL, while it concurrently decreased the protein levels of perilipin-1. SL30E downregulated p62/SQSTM1 protein level and upregulated LC3-II protein level. Moreover, SL30E was demonstrated to elevate the protein levels of p-AMPK and PGC-1α. The results indicate that SL30E inhibits lipid accumulation by suppressing adipogenesis and inducing lipolysis, lipophagy, and thermogenesis in 3T3-L1 cells. These observations provide potential insights into the mechanisms underlying the anti-obesity effects of SL, contributing valuable information to the existing body of knowledge.

Keywords

Acknowledgement

This study was supported by a grant from the National Institute of Forest Science (Grant number: FE0100-2023-04-2023) funded by the Korea Forest Service and the R&D Program for Forest Science Technology (Project No. RS-2024-00405196) provided by the Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Bjerregard LG, Jensen BW, Angquist L, Osler M, Sorensen TIA, Baker JL. 2018. Change in overweight from childhood to early adulthood and risk of type 2 diabetes. N. Engl. J. Med. 378: 1302-1312.
  2. Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, et al. 2016. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N. Engl. J. Med. 374: 2430-2440.
  3. Calle EE. 2007. Obesity and cancer. BMJ 335: 1107-1108.
  4. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. 2003. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348: 1625-1638.
  5. Muller TD, Bluher M, Tschop MH, DiMarchi RD. 2022. Anti-obesity drug discovery: advances and challenges. Nat. Rev. Drug Discov. 21: 201-223.
  6. Kang JG, Park CY. 2012. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab. J. 36: 13-25.
  7. Karri S, Sharma S, Hatware K, Patil K. 2019. Natural anti-obesity agents and their therapeutic role in management of obesity: a future trend perspective. Biomed. Pharmacother. 110: 224-238.
  8. Friedman M. 2016. Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5: 80.
  9. Pak ME, Li W. 2023. Neuroprotective effects of Sparassis crispa ethanol extract through the AKT/NRF2 and ERK/CREB pathway in mouse hippocampal cells. J. Fungi 9: 910.
  10. Kimura T. 2013. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. BioMed Res. Int. 2013: 982317.
  11. Takeyama A, Nagata Y, Shirouchi B, Nonaka C, Aoki H, Haraguchi T, et al. 2018. Dietary Sparassis crispa reduces body fat mass and hepatic lipid levels by enhancing energy expenditure and suppressing lipogenesis in rats. J. Oleo Sci. 67: 1137-1147.
  12. Tung YC, Hsieh PH, Pan MH, Ho CT. 2017. Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs. J. Food Drug Anal. 25: 100-110.
  13. Lee HJ, Le B, Lee DR, Choi BK, Yang SH. 2018. Cissus quadrangularis extract (CQR-300) inhibits lipid accumulation by downregulating adipogenesis and lipogenesis in 3T3-L1 cells. Toxicol. Rep. 5: 608-614.
  14. Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, et al. 2002. Regulation of Wnt signaling during adipogenesis. J. Biol. Chem. 277: 30998-31004.
  15. Patel YM, Lane MD. 2000. Mitotic clonal expansion during preadipocyte differentiation: calpain-mediated turnover of p27. J. Biol. Chem. 275: 17653-17660.
  16. Hamilton MT, Hamilton DG, Zderic TW. 2007. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56: 2655-2667.
  17. Haczeyni F, Bell-Anderson KS, Farrell GC. 2018. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes. Rev. 19: 406-420.
  18. Haider N, Larose L. 2019. Harnessing adipogenesis to prevent obesity. Adipocyte 8: 98-104.
  19. Feng S, Reuss L, Wang Y. 2016. Potential of natural products in the inhibition of adipogenesis through regulation of PPARγ expression and/or its transcriptional activity. Molecules 21: 1278
  20. Jakab J, Miskic B, Miksic S, Juranic B, Cosic V, Schwarz D, et al. 2021. Adipogenesis as a potential anti-obesity target: a review of pharmacological treatment and natural products. Diabetes Metab. Syndr. Obes. Rev. 14: 67-83.
  21. Madsen MS, Siersbaek R, Boergesen M, Nielsen R, Mandrup S. 2014. Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol. Cell. Biol. 34: 939-954.
  22. Pamplona JH, Zoehler B, Shigunov P, Barison MJ, Severo VR, Erich NM, et al. 2022. Alternative methods as tools for obesity research: in vitro and in silico approaches. Life 13: 108.
  23. Rosen ED, MacDougald OA. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7: 885-896.
  24. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. 2007. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27: 79-101.
  25. Morak M, Schmidinger H, Riesenhuber G, Rechberger GN, Kollroser M, Haemmerle G, et al. 2012. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues. Mol. Cell. Proteomics 11: 1777-1789.
  26. Wu JW, Preuss C, Wang SP, Yang H, Ji B, Carter GW, Gladdy R, et al. 2017. Epistatic interaction between the lipase-encoding genes Pnpla2 and lipe causes liposarcoma in mice. PLoS Genet. 13: e1006716.
  27. Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P. 2008. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47: 1936-1946.
  28. Temprano A, Sembongi H, Han GS, Sebastian D, Capellades J, Moreno C, et al. 2016. Redundant roles of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes. Diabetologia 59: 1985-1994.
  29. Zhang S, Liu G, Xu C, Liu L, Zhang Q, Xu Q, et al. 2018. Perilipin 1 mediates lipid metabolism homeostasis and inhibits inflammatory cytokine synthesis in bovine adipocytes. Front. Immunol. 9: 467.
  30. Lam T, Harmancey R, Vasquez H, Gilbert B, Patel N, Hariharan V, et al. 2016. Reversal of intramyocellular lipid accumulation by lipophagy and a p62-mediated pathway. Cell Death Discov. 2: 16061.
  31. Zhang S, Peng X, Yang S, Li X, Huang M, Wei S, et al. 2022. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 13: 132.
  32. Zhang X, Wu D, Wang C, Luo Y, Ding X, Yang X, et al. 2020. Sustained activation of autophagy suppresses adipocyte maturation via a lipolysis-dependent mechanism. Autophagy 16: 1668-1682.
  33. Han SL, Qian YC, Limbu SM, Wang J, Chen LQ, Zhang ML, et al. 2021. Lipolysis and lipophagy play individual and interactive roles in regulating triacylglycerol and cholesterol homeostasis and mitochondrial form in zebrafish. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866: 158988.
  34. Jager S, Handschin C, Pierre J, Spiegelman BM. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1 alpha. Proc. Natl. Acad. Sci. USA 104: 12017-12022.
  35. Zhiguo Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, et al. 2014. Berberine activates thermogenesis in white and brown adipose tissue. Nat.Commun. 5: 5493.
  36. Chen S, Liu X, Peng C, Tan C, Sun H, Liu H, et al. 2021. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metab. 33: 565-580.
  37. Shin H, Shi H, Xue B, Yu L. 2018. What activates thermogenesis when lipid droplet lipolysis is absent in brown adipocytes?. Adipocyte 7: 143-147.