• Title/Summary/Keyword: E. coli adsorption

Search Result 41, Processing Time 0.029 seconds

Syntheses and Properties of Isosorbide-based Cationic Gemini Surfactants (이소소르비드 기반의 양이온 제미니 계면활성제 합성 및 물성)

  • Cho, Jung-Eun;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • In this study, a cationic gemini surfactant was synthesized using isosorbide, in order to modify the alkyl chain length in the range of C10~C16. The c.m.c and surface tension of the synthesized cationic gemini surfactant were measured to be in the ranges of 5.13 × 10-4~1.62 × 10-4 mol/L and 31.86~37.41 dyne/cm, respectively. The surface tension increased with increasing the length of the alkyl group. In addition, as the area per molecule occupied by the surfactant adsorbed on the interface increased with the reduced extent of adsorption, the bubble generation at the air-water interface decreased. The emulsifying capacity in benzene was maintained above 60 ± 5% after 8 h while that in soybean oil tended to decrease above 50 ± 5%. The performance was superior in benzene, a highly hydrophobic substance, and the emulsion stability was shown to be consistent beyond 1 h during the preparation of pre-emulsion in oil and water. The antimicrobial activity was dependent on the length of the hydrophobic chain of the synthesized cationic gemini surfactant due to the increased size of the clean zone in Escherichia coli (E.coli) and Staphylococcus aureus.

Solid-phase Refolding of Poly-lysine Tagged Fusion Protein of hEGF and Angiogenin

  • Park Sang Joong;Ryu Kang;Suh Chang Woo;Chai Young Gyu;Kwon Oh Byung;Park Seung Kook;Lee Eun Kyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • A fusion protein, consisting of a human epidermal growth factor (hEGF) as the recognition domain and human angiogenin as the toxin domain, can be used as a targeted therapeutic against breast cancer cells among others. The fusion protein was expressed as inclusion body in recombinant E. coli, and when the conventional, solution-phase refolding process was used the refolding yield was very low due to severe aggregation. It was probably because of the opposite electric charge at a neutral pH resulting from the vastly different pI values of each domain. The solid-phase refolding process that exploited the ionic interactions between ionic exchanger surface and the fusion protein was tried, but the adsorption yield was also very low, below $ 30\%$, regardless of the resins and pH conditions used. Therefore, to provide a higher ionic affinity toward the solid matrix, six lysine residues were tagged to the N-terminus of the hEGF domain. When heparin-Sepharose was used as the matrix, the adsorption capacity increased 2.5-3 times to about $88\%$. Besides the intrinsic affinity of angiogenin to heparin, the poly-lysine tag provided additional ionic affinity. And the subsequent refolding yield increased nearly 13-fold, from ca. $4.8\%$ in the conventional refolding of the untagged fusion protein to $63.6\%$. The process was highly reproducible. The refolded protein in the column eluate retained RNase bioactivity of angiogenin.

Purification of Total Ginsesides with Macroporous Resins and Their Biological Activities

  • Li, Huayue;Jin, Haizhu;Lee, Dong-Geun;Lee, Jae-Hwa;Lee, Sang-Hyeon;Ha, Bae-Jin;Ha, Jong-Myung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1321-1326
    • /
    • 2006
  • Total ginsenosides were purified and their antioxidant, antibacterial and anticancer activities were measured. The crude extracts of ginseng, which were extracted with 75% ethanol by ultrasonification method, were firstly purified on AB-8 macroporous adsorption column to remove water soluble impurities, and decolored on Amberlite IRA 900 Cl anion-exchange column. Then, they were purified on Amberlite XAD16 adsorption column to delete the non-polar impurities. Total ginsenosides contents of the purified extracts were 79.4%, 71.7% and 72.5% in cultured wild ginseng, red ginseng and white ginseng, which were significantly increased than those of crude extracts. All of the three extracts showed concentration-dependant scavenging activities against DPPH radicals, among which white ginseng showed the most powerful activity. Cultured wild ginseng roots showed strongest effect against both B. subtilis PM 125(Gram-positive) and E. coli D31 (Gram-negative) bacteria, while red ginseng and white ginseng only showed the activity against B. subtilis. According to the result of the MTT assay, ail of the three extracts inhibited the growth of U-937 human hohistiocytic lympma cell, which were significantly different (p < 0.05) when compared to the control.

Solid-phase refolding of poly-lysine tagged fusion protein of hEGF and angiogenin

  • Park, Sang-Joong;Ryu, Kang;Chai, Young-Gyu;Kweon, Oh-Byung;Park, Seung-Kook;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.197-203
    • /
    • 2001
  • A fusion protein, consisting of human epidermal growth factor as a recognition domain and human angiogenin as a toxin domain, can be used as a targeted therapeutic against breast cancer cells among others. The fusion protein was expressed as inclusion body in recombinant E. coli, and when the conventional, solution-phase refolding process was used the refolding yield was very low due to severe aggregation, probably due to the opposite surface charge due to vastly different pI values of each domain. Solid-phase refolding process exploiting ionic interactions between the solid matrix and the protein was tried, but the ionic binding yield was very low regardless of the resins and pH conditions used. To provide higher affinity toward the solid matrix, six lysine residues were tagged to the N -terminus of the hEGF domain When the cation exchange resins such as heparin- or CM-Sepharose were used as the matrix, the adsorption capacity increased 2.5-3 times and the subsequent refolding yield increased nearly IS times compared to the conventional process.

  • PDF

Cloning and Expression of Cyclodextrin Glycosyltransferase Gene from Paenibacillus sp. T16 Isolated from Hot Spring Soil in Northern Thailand

  • Charoensakdi, Ratiya;Murakami, Shuichiro;Aoki, Kenji;Rimphanitchayakit, Vichien;Limpaseni, Tipaporn
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.333-340
    • /
    • 2007
  • Gene encoding cyclodextrin glycosyltransferase (CGTase), from thermotolerant Paenibacillus sp. T16 isolated from hot spring area in northern Thailand, was cloned and expressed in E. coli (JM109). The nucleotide sequences of both wild type and transformed CGTases consisted of 2139 bp open reading frame, 713 deduced amino acids residues with difference of 4 amino acid residues. The recombinant cells required 24 h culture time and a neutral pH for culture medium to produce compatible amount of CGTase compared to 72 h culture time and pH 10 for wild type. The recombinant and wild-type CGTases were purified by starch adsorption and phenyl sepharose column chromatography and characterized in parallel. Both enzymes showed molecular weight of 77 kDa and similar optimum pHs and temperatures with recombinant enzyme showing broader range. There were some significant difference in pH, temperature stability and kinetic parameters. The presence of high starch concentration resulted in higher thermostability in recombinant enzyme than the wild type. The recombinant enzyme was more stable at higher temperature and lower pH, with lower $K_m$ for coupling reaction using cellobiose and cyclodextrins as substrates.

Unfolded Histidine-Tagged Protein is Immobilized to Nitrilotriacetic Acid-Nickel Beads, But Not the Nickel-Coated Glass Slide

  • Cho Min-Ho;Ahn Sun-Young;Park Heon-Yong
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.133-136
    • /
    • 2006
  • The adsorption of proteins on the surface of glass slides is essential for construction of protein chips. Previously, we prepared a nickel-coated plate by the spin-coating method for immobilization of His-tagged proteins. In order to know whether the structural factor is responsible for the immobilization of His-tagged proteins to the nickel-coated glass slide, we executed a series of experiments. First we purified a His-tagged protein after expressing the vector in E. coli BL21 (DE3). Then we obtained the unfolding curve for the His-tagged protein by using guanidine hydrochloride. Fractions unfolded were monitored by internal fluorescence spectroscopy. The ${\Delta}G_{H20}$ for unfolding was $2.27kcal/mol{/pm}0.52$. Then we tested if unfolded His-tagged proteins can be adsorbed to the nickel-coated plate, comparing with $Ni^{2+}-NTA$ (nitrilotriacetic acid) beads. Whereas unfolded His-tagged proteins were adsorbed to $Ni^{2+}-NTA$ beads, they did not bind to the nickel-coated plate. In conclusion, a structural factor is likely to be an important factor for constructing the protein chips, when His-tagged proteins will immobilize to the nickel-coated slides.

In vitro Evaluation of Anti-Human Immunodeficiency Virus Activity of Nucleoside Derivatives and Studies on Their Mode of Action (핵산유도체들의 항 Human Immunodeficiency Virus in vitro 약효평가와 작용기전연구)

  • Lee, Chong-Kyo;Kim, Dong-Ki;Kim, Jee-Hyun;Kim, Hae-Soo;Pi, Mi-Kyoung;Park, Jong-Beak;Kim, Baek
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 1997
  • To evaluate in vitro anti-HIV efficacies of nucleoside derivatives, MT-4 cell line was infected with HIV-1 and HIV-2 respectively and treated with various compounds and the formerly approved drugs such as AZT, d4T, ddC and ddI. CPE method was used to evaluate their antiviral activity. Most dideoxynucleosides, AZT, d4T, ddC and ddI, showed anti-HIV activities against both viruses but no other compounds including anti-herpesvirus drugs did any. Further experiments were carried out to study their inhibitory mechanism of viral adsorption. The results showed no inhibition of syncytium formation due to an interaction between the gp120 expressed in HIV -infected cell surface and CD4 receptor on the uninfected cell surface in the presence of AZT. AZT showed no activity up to $100\;{\mu}g/ml$. Inhibition of reverse transcriptase (RT) in the presence of AZT-triphosphate was tested by using RT expressed in E. coli and purified and its $IC_{50}$ was 4.5 nM.

  • PDF

Highly Sensitive Detection of Pathogenic Bacteria Using PDMS Micro Chip Containing Glass Bead (유리비드를 포함한 PDMS 마이크로칩을 이용한 고감도 감염성 병원균 측정에 관한 연구)

  • Won, Ji-Yeong;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.432-438
    • /
    • 2009
  • Here, we demonstrated simple nucleic acid, RNA, concentration method using polymer micro chip containing glass bead ($100\;{\mu}m$). Polymer micro chip was fabricated by PDMS ($1.5\;cm\;{\times}\;1.5\;cm$, $100\;{\mu}m$ in the height) including pillar structure ($160\;{\mu}m\;(I)\;{\times}\;80\;{\mu}m\;(w)\;{\times}\;100\;{\mu}m\;(h)$, gap size $50\;{\mu}m$) for blocking micro bead. RNA could be adsorbed on micro glass bead at low pH by hydrogen bonding whereas RNA was released at high pH by electrostatic force between silica surface and RNA. Amount of glass beads and flow rate were optimized in aspects of adsorption and desorption of RNA. Adsorption and desorption rate was measured with real time PCR. This concentrated RNA was applied to amplification micro chip in which NASBA (Nucleic Acid Sequence Based Amplification) was performed. As a result, E.coli O157 : H7 in the concentration of 10 c.f.u./10 mL was successfully detected by these serial processes (concentration and amplification) with polymer micro chips. It implies this simple concentration method using polymer micro chip can be directly applied to ultra sensitive method to measure viable bacteria and virus in clinical samples as well as environmental samples.

Solid-Phase Refolding of Poly-Lysine fusion Protein of hEGF and Angiogenin (Poly-lysine이 연결된 hEGF와 angiogenin의 융합단백질의 고체상 재접힘)

  • Park, Sang-Joong;Ryu, Kang;Suh, Chang-Woo;Chai, Young-Gyu;Kwon, Oh-Byung;Park, Seung-Kook;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.153-157
    • /
    • 2002
  • A fusion protein, consisting of a human epidermal growth factor as the recognition domain and human angiogenin as the toxin domain, can be used as a targeted therapeutic against breast cancer cells among others. The fusion protein was expressed as an inclusion body in recombinant E. coli, yet when the conventional solution-phase refolding process was used the refolding yield was very low due to severe aggregation, probably because of the opposite surface charge resulting from the vastly different pl values of each domain. Accordingly the solid-phase refolding process, which exploits the ionic interactions between a solid matrix and the protein, was tried, however the ionic binding yield was also very low regardless of the resins and pH conditions used. Therefore, to provide a higher affinity toward the solid matrix, six Iysine residues were tagged to the N-terminus of the hEGF domain. When cation exchange resins, such as heparin- or CM-Sepharose, were used as the matrix, the adsorption capacity increased 2.5~3-fold and the subsequent refolding yield increased nearly 15-fold compared to the conventional process. A similat result was also obtained when an Ni-NTA metal affinity resin was used.

Relationship between Pathogenic Vibrios and Zooplankton Biomass in Coastal Area, Korea (병원성 비브리오균과 동물성 플랑크톤과의 관계에 관한 연구)

  • CHANG Dong-Suck;KIM Chang-Hoon;YU Hong-Sik;KIM Shin-Hee;JEONG Eun-Tak;SHIN Il-Shik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.5
    • /
    • pp.557-566
    • /
    • 1996
  • An ecological study on pathogenic vibrios was done in the aquatic environments of southern coast of Korea during summer in 1995, to investigate the distribution and relationship between pathogenic vibrio and zooplankton. Furthermore, special emphasis was given to study on the efforts of zooplankton existence on the wintering of Vibrio cholerae in the aquatic region in Korea. During the study period, pathogenic vibrios were isolated from the samples such as V. parahaemolyticus, V. vulnificus, V. mimicus, and V. cholerae non O1, but V. cholerae O1 was not detected in any sample submitted in this study. Adsorption ratio of V. parahaemolyticus onto zooplankton was higher than that of E. coli. The efficiency of adsorption was found to be on the concentration of NaCl and other ions found in sea water. For example, adsorption ratio of V. parahaemolyticus were $75\%\;at\;5\%_{\circ}$ of NaCl solution and $55\%$ at same salinity of diluted sea water, but those were decreased as $20\%\;and\;7\%\;at\;15\%_{\circ}$ salinity of NaCl solution and diluted sea water, respectively. In addition, survival period of pathogenic vibrio was extended in the presence of live copepods at $25^{\circ}C$, but zooplankton existence has no significant effect on the survival rate at $5^{\circ}C$ in closed microcosm and also microalgae and dead copepods do not affect on the survival of V. parahaemolyticus. According to these experimental results, zooplankton has positive effects on the growth and survival rate of pathogenic vibrios in sea water during the summer season, but copepods have no significant effects on the growth and survival rate of them in winter season in Korea. Finally, authors suggest that V. cholerae is not able to over winter with zooplankton in adjacent sea water in Korea.

  • PDF