• Title/Summary/Keyword: E-STEAM

Search Result 267, Processing Time 0.024 seconds

Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

  • Leskovar, Matjaz;Ursic, Mitja
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.72-86
    • /
    • 2016
  • A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel-coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

Modeling on the Condensation of a Stable Steam Jet Discharging into a Quenching Tank (응축탱크로 방출되는 안정된 증기제트 응축모델)

  • 김환열;하광순;배윤영;박종균;최상민
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.349-356
    • /
    • 2001
  • Phenomenon of direct contact condensation (DCC) heat transfer between steam and water is characterized by the transport of heat and mass through a moving steam/water interface. Since the DCC heat transfer provides some advantageous features in the viewpoint of enhanced heat transfer, it is widely applied to the diversified industries. This study proposes a simple condensation model on the stable steam jets discharging into a quenching tank with subcooled water from a single horizontal pipe for the prediction of the steam jet shapes. The model was derived from the mass, momentum and energy equations as well as thermal balance equation with condensing characteristics at the steam/water interface for the axi-symmetric coordinates. The extremely large heat transfer rate at the steam/water interface was reflected in the effective thermal conductivity estimated from the previous experimental results. The results were compared with the experimental ones. The predicted steam jet shape(i. e. radius and length) by the model was increasing as the steam mass flux and the pool temperature were increasing, which was similar to the trend observed in the experiment.

  • PDF

Effect of discontinuous mixture gas feeding on effective hydrogen production in a steam reformer frommethane (효율적 수소 생산을 위한 메탄 수증기 개질 반응기에서의 불연속적 가스 유입의 영향)

  • Lee, Shin-Ku;Park, Joon-Guen;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.25-28
    • /
    • 2008
  • Steam reforming reaction is a matured technology to get hydrogen from hydrocarbon fuels compared with other reforming reactions such as partial oxidation(POX), autothermal reforming(ATR). It is so endothermic that it needs heat source to activate the reaction. Due to the reaction characteristics, heat transfer limitation phenomena generally occur in the steam reformer. As one of new ideas, the effect of discontinuous gas feeding is investigated based on heat transfer characteristics. The new operating method is usually favorable at high GHSV region(i.e. over $10,000h^{-1}$). In order to numerically simulate the physical issues, numerical approach is adopted based on heterogeneous reaction model, two-equation model in energy equation, and other constitutive models in porous media.

  • PDF

FISSION PRODUCT AND ACTINIDE RELEASE FROM THE DEBRIS BED TEST PHEBUS FPT4: SYNTHESIS OF THE POST TEST ANALYSES AND OF THE REVAPORISATION TESTING OF THE PLENUM SAMPLES

  • Bottomley P.D.W.;Gregoire A.C.;Carbol P.;Glatz J.P.;Knoche D.;Papaioannou D.;Solatie D.;Van Winckel S.;Gregoire G.;Jacquemain D.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.163-174
    • /
    • 2006
  • The $Ph{\acute{e}}bus$ FP project is an international reactor safety project. Its main objective is to study the release, transport and retention of fission products in a severe accident of a light water reactor (LWR). The FPT4 test was performed with a fuel debris bed geometry, to look at late phase core degradation and the releases of low volatile fission products and actinides. Post Test Analyses results indicate that releases of noble gases (Xe, Kr) and high-volatile fission products (Cs, I) were nearly complete and comparable to those obtained during $Ph{\acute{e}}bus$ tests performed with a fuel bundle geometry (FPT1, FPT2). Volatile fission products such as Mo, Te, Rb, Sb were released significantly as in previous tests. Ba integral release was greater than that observed during FPT1. Release of Ru was comparable to that observed during FPT1 and FPT2. As in other $Ph{\acute{e}}bus$ tests, the Ru distribution suggests Ru volatilization followed by fast redeposition in the fuelled section. The similar release fraction for all lanthanides and fuel elements suggests the released fuel particles deposited onto the plenum surfaces. A blockage by molten material induced a steam by-pass which may explain some of the low releases. The revaporisation testing under different atmospheres (pure steam, $H_2/N_2$ and steam /$H_2$) and up to $1000^{\circ}C$ was performed on samples from the first upper plenum. These showed high releases of Cs for all the atmospheres tested. However, different kinetics of revaporisation were observed depending on the gas composition and temperature. Besides Cs, significant revaporisations of other elements were observed: e.g. Ag under reducing conditions, Cd and Sn in steam-containing atmospheres. Revaporisation of small amounts of fuel was also observed in pure steam atmosphere.

A Study on the Manufacture of Activated Carbon using Indonesian Coal (인도네시아 석탄을 이용한 활성탄 제조에 관한 연구)

  • Baek, Ill-Hyun;Kim, Tae-Young;Yeon, Ik-June;Lee, Jeong-Sik;Lee, Dong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.419-423
    • /
    • 1998
  • Indonesian coal-based activated carbon was manufactured with steam-reaction method. Also effects of carbonization temperature and steam amount on the process yield and quality of the product were investigated at the activation temperature of $900^{\circ}C$. The rotary kiln type furnace was used for both carbonization and activation and the optimum operation conditions were carbonization temperature of $700^{\circ}C$, steam amount of 2.7g steam/g char and activation temperature of $900^{\circ}C$. At this condition, the iodine value of activated carbon was 1,010 mg/g. Methylene Blue Adsorption Number was 230mg/g and B.E.T. surface area was $1,020m^2/g$ with the hardness about 97.

  • PDF

Analysis of Wall-Thinning Effects Caused by Power Uprates in the Secondary System of a Nuclear Power Plant (원전 2차계통의 출력증강 운전에 따른 배관감육 영향 분석)

  • Yun, Hun;Hwang, Kyeongmo;Lee, Hyoseoung;Moon, Seung-Jae
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • Piping and equipment are degraded by flow-accelerated corrosion (FAC) in nuclear power plants. FAC causes numerous problems and nuclear utilities maintain programs to control FAC. The key parameters influencing FAC are hydrodynamic conditions, water chemistry, and effect of materials. Recently, a nuclear utility has planned slight power uprates in Korea. Operating conditions need to be changed in the secondary system according to power uprates. This study analyzed the effect of wall-thinning caused by power uprates. The change of operation data in the secondary cycle is reviewed, and wall-thinning rates are analyzed in the main lines. As a result, two phase (mixture of water and steam) lines have a greater impact than a water line under power uprate conditions. Also, the quality of steam is the most important factor for FAC in two phase lines.

A Study on the Effects of Online Word-of-Mouth on Game Consumers Based on Sentimental Analysis (감성분석 기반의 게임 소비자 온라인 구전효과 연구)

  • Jung, Keun-Woong;Kim, Jong Uk
    • Journal of Digital Convergence
    • /
    • v.16 no.3
    • /
    • pp.145-156
    • /
    • 2018
  • Unlike the past, when distributors distributed games through retail stores, they are now selling digital content, which is based on online distribution channels. This study analyzes the effects of eWOM (electronic Word of Mouth) on sales volume of game sold on Steam, an online digital content distribution channel. Recently, data mining techniques based on Big Data have been studied. In this study, emotion index of eWOM is derived by emotional analysis which is a text mining technique that can analyze the emotion of each review among factors of eWOM. Emotional analysis utilizes Naive Bayes and SVM classifier and calculates the emotion index through the SVM classifier with high accuracy. Regression analysis is performed on the dependent variable, sales variation, using the emotion index, the number of reviews of each game, the size of eWOM, and the user score of each game, which is a rating of eWOM. Regression analysis revealed that the size of the independent variable eWOM and the emotion index of the eWOM were influential on the dependent variable, sales variation. This study suggests the factors of eWOM that affect the sales volume when Korean game companies enter overseas markets based on steam.

Effects of Pre-cooking Methods on Quality Characteristics of Reheated Marinated Pork Loin

  • Kim, Tae-Kyung;Hwang, Ko-Eun;Kim, Young-Boong;Jeon, Ki-Hong;Leem, Kyoung-Hoan;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.970-980
    • /
    • 2018
  • We evaluated the effects of pre-cooking methods on the quality of reheated marinated pork loin. Frozen marinated pork loins cooked using various methods (boiling, grilling, pan frying, infrared cooking, and superheated steam cooking) were reheated in a microwave, and their pH, color, cooking loss, re-heating loss, total loss, thiobarbituric acid reactive substance (TBARS) value, sensory properties, and shear force were determined. Although all parameters varied with different cooking methods, lightness values and TBARS values showed the tendency to decrease and increase, respectively, after reheating. Superheated steam-cooked samples showed the lowest values of cooking loss, total loss, TBARS value, and shear force (p<0.05) and the highest lightness, redness, and yellowssness values and juiciness, chewiness, and overall acceptability scores (p<0.05). These results show that pre-cooking with superheated steam maintains the quality characteristics of marinated pork loin upon reheating. Therefore, pre-cooking with superheated steam may be beneficial for the commercial distribution of frozen cooked marinated pork loin.

Numerical Simulation of Boiling 2-Phase Flow in a Helically-Coiled Tube (나선형코일 튜브 비등2상 유동 수치해석)

  • Jo J. C.;Kim W. S.;Kim H. J.;Lee Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.49-55
    • /
    • 2004
  • This paper addresses a numerical simulation of the flow and heat transfer in a simplified model of helically coiled tube steam generator using a general purpose computational fluid dynamic analysis computer code. The steam generator model is comprised of a cylindrical shell and helically coiled tubes. A cold feed water entered the tubes is heated up, evaporates. and finally become a superheated steam with a large amount of heat transferred continuously from the hot compressed water at higher pressure flowing counter-currently through the shell side. For the calculation of tube side two-phase flow field formed by boiling, inhomogeneous two-fluid model is used. Both the internal and external turbulent flows are simulated using the standard k-e model. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. The numerical calculations are peformed for helically coiled tubes of steam generator at an integral type pressurized water reactor under normal operation. The effects of tube-side inlet flow velocity are discussed in details. The results of present numerical simulation are considered to be physically plausible based on the data and knowledge from previous experimental and numerical studies where available.

  • PDF

A Comparative Study for Steam-Methane Reforming Reaction Analysis Model (수증기-메탄개질반응 해석모델의 비교연구)

  • Choi, Chong-Gun;Chung, Tae-Yong;Nam, Jin-Hyun;Shin, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.497-503
    • /
    • 2008
  • Hydrogen is considered as a fuel of the future for its renewability and environmental compatibility. The reforming of hydrocarbon fuels is currently the most important source of hydrogen, which is expected to continue for next several decades. In this study, extensive CFD simulations on the steam-methane reforming process were conducted to study the performance of four reaction models, i.e. three Arrhenius-type models and a user-defined function (UDF) model. The accuracies of different reaction models for various operating temperatures and steam carbon ratios (SCRs) were evaluated by comparing their CFD results with zero-dimensional intrinsic model of Xu and Froment. It was found that the UDF model generally produced more accurate results than Arrhenius-type models. However, it was also shown that Arrhenius-type models could be made sufficiently accurate by choosing appropriate reaction coefficients, and thus could also be useful for the simulation of the steam-methane reforming process.